

KOCHI UNIVERSITY OF TECHNOLOGY

Social Design Engineering Series

SDES-2025-8

Online productivity in the Japanese workplace: The role of work formats, task types, and remuneration systems

Kostiantyn Ovsiannikov

Research Institute for Future Design, Kochi University of Technology

Koji Kotani

Research Institute for Future Design, Kochi University of Technology

Urban Institute, Kyushu University

College of Business, Rikkyo University

Hodaka Morita

Institute of Economic Research, Hitotsubashi University

December 23, 2025

School of Economics and Management

Research Institute for Future Design

Kochi University of Technology

KUT-SDE working papers are preliminary research documents published by the School of Economics and Management jointly with the Research Institute for Future Design at Kochi University of Technology. To facilitate prompt distribution, they have not been formally reviewed and edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The views and interpretations expressed in these papers are those of the author(s). It is expected that most working papers will be published in some other form.

Online productivity in the Japanese workplace: The role of work formats, task types, and remuneration systems

Kostiantyn Ovsiannikov* Koji Kotani*,†,‡,§ Hodaka Morita¶

December 24, 2025

Abstract

The rapid expansion of telework during the COVID-19 pandemic has prompted extensive research on remote work practices. However, the implications of telework for productivity across different task types and work formats remain underexplored. This study investigates how perceived productivity in an online environment varies by (1) work formats (individual vs. group), (2) task types (routine vs. creative) and (3) remuneration systems (seniority-based vs. performance-based), with a focus on the Japanese workplace. Drawing on a stratified survey of 500 employees across diverse industries, we examine comparative perceptions of online versus face-to-face productivity. Our findings reveal three key patterns. First, online productivity is significantly lower for group work than for individual work. Second, within group format, creative tasks are associated with lower perceived productivity compared to routine ones. Third, organizations operating under seniority-based wage system report consistently lower online productivity than those using performance-based system. Together, these findings point to a “telework dilemma,” wherein employees value telework but perceive it to be less effective — especially for collaborative, creative tasks — under traditional organizational structures. The study contributes to the literature on virtual work and organizational design by identifying structural and task-related contingencies that shape the effectiveness of remote work.

Key Words: Telework; Human resource management; Employee attitudes; COVID-19; Knowledge transfer

*Research Institute for Future Design, Kochi University of Technology

†Urban Institute, Kyushu University

‡College of Business, Rikkyo University

§Corresponding author, E-mail: kojikotani757@gmail.com. We do not have any conflict of interest.

¶Institute of Economic Research, Hitotsubashi University

Contents

Nomenclature	2
1 Introduction	3
2 Working environment and productivity	5
3 Results	8
4 Conclusion	18
A Supplementary tables	24
B Supplementary figures	25

Nomenclature

CGP creative group productivity

CIP creative individual productivity

D-PPOE perceived productivity difference between routine and creative tasks in an online environment as compared to an office environment

ICT Information and Communications Technology

PPOE perceived productivity in an online environment as compared to an office environment

RGP routine group productivity

RIP routine individual productivity

SMEs small and medium-sized enterprises

WCT willingness to continue telework

1 Introduction

Against the background of the ongoing COVID-19 pandemic, our everyday lifestyles as well as working conditions have undergone noticeable changes. Initially, the transition from a face-to-face to an online environment has been dictated by a need of social distancing and was mostly perceived as a temporary concession. However, as entire sectors of economy have started to embrace teleworking in the long run, management, employees as well as environmental advocates and other stakeholders have realized the benefits associated with this format. The most obvious ones include spared cost of transportation and office rent, better opportunities to spend time with family as well as enhanced autonomy and flexibility regarding a workplace routine. At the same time, the costs associated with telework include, among others, extended working hours in front of PC, lack of direct communications as well as supervision challenges. Nowadays, upon questioning net benefits of prolonged telework, numerous companies opt to return to a face-to-face environment (Taskin and Bridoux, 2010, Greer and Payne, 2014). Given this state of affairs, current research empirically addresses the issue of online productivity in a workplace depending on work formats, task types and remuneration systems.

There exists an overwhelming evidence about positive organizational outcomes that telework embodies (Martin and MacDonnell, 2012). Golden (2006), Mahler (2012) and Caillier (2013) report that limited teleworking hours are associated with both high job satisfaction and high productivity. Those who are allowed to telework also display above-average levels of organizational commitment (Mahler, 2012). Positive effect of the transition is magnified for those who used to spend long time commuting to their workplaces (Shabanpour et al., 2018, Lister and Harnish, 2019). Despite taking longer time to carry out tasks in a remote format as compared to a face-to-face format, 76 % of the U.K. employees report improved work effectiveness, which is mostly due to the absence of office distractions (Baruch, 2000). Telework can also enhance inter-employee communication, provided the sound ICT (Information and Communications Technology) environment and clearly defined performance benchmarks (Bailey and Kurland, 2002, Illegems and Verbeke, 2004, Bosua et al., 2013).

On the other hand, due to the COVID-19 pandemic, many employees have been conducting their work in a solely online environment over a long period of time. After an initial improvement

30 of a work-life balance, the situation subsequently deteriorated due to the following factors. First,
31 proximity to a family as a result of working from home has often blurred the lines between job
32 responsibilities and domestic chores (Baruch, 2000, Golden et al., 2006, Capecchi et al., 2024).
33 Second, whereas occasional teleworking can ease the burden of formal office communication,
34 an entirely online environment with unclear time horizons may lead to psychological isolation,
35 deterioration of trust among employees and a loss of organizational commitment (Gajendran and
36 Harrison, 2007, Pyöriä, 2011, Galanti et al., 2021, McPhail et al., 2024). While for sectors such
37 as real estate, financial intermediation and education it has been natural to widen the scope of
38 remote activities (Welz and Wolf, 2010), for manufacturing industries such transition appears
39 problematic (Dingel and Neiman, 2020, Etheridge et al., 2020, Okubo, 2020). Other associated
40 obstacles include (i) a lack of proper employee monitoring (Greer and Payne, 2014), (ii) unrealized
41 collaboration possibilities and (iii) security concerns over data transmission (Ruth and Chaudhry,
42 2008). All in all, management remains skeptical regarding the net benefits of telework.

43 Recognizing the variety of challenges as well as opportunities that implementation of tele-
44 work presents for employees and their companies, existing scholarship mostly focuses on online
45 individual productivity, while not sufficiently highlighting the issue of online group productivity
46 (Salas et al., 2008, Lisbona et al., 2020, van der Lippe and Lippényi, 2020). We claim that the
47 major challenge brought by the spread of telework is an impeded group collaboration, especially
48 when working on creative tasks. Addressing this literature gap, we pose the following research
49 question: how did “perceived productivity in an online environment as compared to an office en-
50 vironment” (henceforth “PPOE”) change depending on work formats (individual vs. group), task
51 types (routine vs. creative) and remuneration systems (seniority-based vs. performance-based)?
52 Let the PPOE difference between routine and creative tasks be “D-PPOE.” To this end, we test the
53 following hypotheses by analyzing the results of a stratified survey: (0) PPOE tends to be high for
54 *individual* as compared to *group* work, (1) *individual* D-PPOE is not significantly different from
55 zero, (2) D-PPOE is positive for *group* work, (3) D-PPOE is positively affected by the “seniority-
56 merit” wage system. The paper proceeds as follows. Section 2 discusses the posed hypotheses,
57 section 3 presents statistical results and section 4 concludes with their implications.

58 2 Working environment and productivity

59 Being well-suited for an individual format (Taskin and Devos, 2005), telework has also been
60 known for impeding inter-personal communications at a workplace. This is important, as the
61 quality of shop-floor interactions exerts a substantial influence on group work (Allen et al., 2015).
62 In particular, it impacts group cohesiveness, motivation and productivity (Hackman, 2012, Salas
63 et al., 2015). As inter-group connections build up incrementally, even highly-efficient individuals
64 require a well-designed environment to become a productive team (Salas et al., 2008, Okubo,
65 2020, Umishio et al., 2022). This is all the more relevant for “virtual teams” (Hackman, 2012,
66 de Leede and Nijland, 2016). Although they enjoy benefits of asynchronicity, flexible schedules
67 and enhanced multimedia tools (Garro-Abarca et al., 2021), flawless interaction necessitates the
68 creation of a virtual environment closely replicating an in-person format (Mak and Kozlowski,
69 2019). At the end, the lack of unmediated communication appears to suppress group PPOE,
70 irrespective of whether tasks are routine or creative. As opposed to a group format, individual work
71 does not hinge upon communication quality and hence can be performed online as productively
72 as face-to-face (Ishii-Kunz, 2025). We assume that this also holds true uniformly, i.e. both for
73 routine and creative tasks.

74 **Hypothesis 0** *PPOE is higher for individual work than for group work irrespective of whether a
75 task is routine or creative.*

76 Classifying job assignments into “routine” and “creative” warrants further clarification. While
77 routine tasks are based on systematized prescriptions, creative ones imply non-standard ways of
78 thinking. According to the common definition of a workplace creativity, it is about the produc-
79 tion of useful and novel ideas or solutions to challenging problems (Amabile et al., 1996) that
80 can range from incremental improvements to radical innovations (Zhou and Shalley, 2011). There
81 exist different views on whether or not teleworking is beneficial for carrying out creative tasks.
82 On one hand, online environment enables well-organized employees to gear their schedules to
83 individual needs. Absence of commuting combined with casual working atmosphere are likely to
84 help workers feel less reserved in carrying out their creative pursuits remotely. Based on the lab-
85 oratory experiment, Dutcher (2012) finds that while a face-to-face format is beneficial for routine

86 tasks, telework is associated with high creative performance.¹ Martínez-Sánchez et al. (2007) and
87 Umishio et al. (2022) also come up with the evidence of an online environment being appropriate
88 for carrying out creative tasks. On the other hand, Vega et al. (2015) and Mercier et al. (2021) find
89 that an overall positive individual PPOE is mostly driven by routine-tasks' enhanced productivity.
90 Likewise, one of the pioneering studies on telecommuting by DuBrin (1991) shows that telework
91 is better geared for structured and repetitive than for creative tasks. Such contradictory evidence
92 regarding individual PPOE is likely to be observed due to the following. By definition, individ-
93 ual assignments can be effectively carried out in the absence of interaction with other co-workers.
94 Hence, online environment, with its supposedly negative (see hypothesis 0) impact on group work,
95 would not harm (or enhance thereof) individual productivity, irrespectively of whether it is a rou-
96 tine or a creative task.

97 **Hypothesis 1** *For individual work, the difference between routine and creative PPOE is not sig-
98 nificantly different from zero.*

99 Group work is indispensable from communications between co-workers and the accompan-
100 ying knowledge-sharing (Kozlowski and Klein, 2000, Salas et al., 2015). Contrary to "explicit
101 knowledge" that can be articulated and conceptualized, it is predominantly "*tacit knowledge*" that
102 proliferates at a shop-floor level (Nonaka, 2007). According to Polanyi (1966) who coined the
103 term, "*tacit knowledge*" is about innate or acquired abilities (e.g. swimming or bicycle-riding) our
104 physiology possesses without being able to analytically describe the underlying mechanism. Tacit
105 knowledge is key for maintaining group cohesiveness which, in turn, facilitates organizational
106 productivity (Cohen and Bailey, 1997, Hodzic et al., 2024). While tacit knowledge is reinforced
107 in a face-to-face format thanks to physical co-location of team members (Roberts, 2000), its qual-
108 ity and transferability inevitably deteriorate online (Khalifa and Davison, 2000, Overmyer, 2011,
109 Allen et al., 2015). However, this decay is not uniform. Due to a lesser role that communication
110 plays for routine tasks as compared to creative tasks, it is still feasible for team-members to per-
111 form routine work in an online format (Martins and Shalley, 2011). As for creative assignments,
112 digital knowledge-sharing turned out to be an important factor for their successful completion

¹The author implemented experimental design not least because of the fact that, until recently, employees were endogenously assigned to telecommute based on their credibility and/or occupational compatibility with an online format. In contrast, the COVID-19 pandemic has prompted non-discriminatory telework transition, enabling researchers to capture differences in productivity as compared to office format.

113 during the COVID-19 era (Tønnesen et al., 2021). At the same time, when benchmarking online
114 group productivity against office standards, creative tasks tend to be impeded by communication
115 hurdles (Han et al., 2017, van der Meulen et al., 2019, Waizenegger et al., 2020, Brucks and Levav,
116 2022). In a nutshell, against an overall envisaged decline in group PPOE (see hypothesis 0), we
117 assume further differences for a group format in respect to routine and creative tasks.

118 **Hypothesis 2** *For group work, the difference between routine and creative PPOE is positive.*

119 In addition to disentangling PPOE into “group” and “individual,” we are also interested in the
120 factors influencing it. It is widely known that employee productivity and creativity are closely
121 linked to a supervision style. Although, despite its developed taxonomy, supervision is difficult to
122 quantify, it can nevertheless be proxied by the type of remuneration system. We suggest “seniority-
123 merit pay” as a proxy for a supervision style largely relying on tacit knowledge, and “performance-
124 based pay” – as a proxy for a supervision style largely relying on explicit knowledge.² On one
125 hand, performance-based pay is rooted in short-term environment-agnostic criteria, providing ef-
126 fective incentives for workers to stay productive under remote working conditions (Cira and Ben-
127 jamin, 1998, Hon, 2012). On the other hand, criteria for evaluating recipients of seniority-merit
128 wages reflect the need to maintain employer-employee organizational commitment by mutually
129 upholding long-term loyalty and trust (Lazear, 2000, Bayo-Moriones et al., 2010, Cadsby et al.,
130 2017). Recipients of seniority-merit wages habitually prove their value through a series of shop-
131 floor interactions – beyond the scope of prescribed duties. As a result, a tacit ecosystem in which
132 they exist is likely to crumble once its nodes become physically disconnected.

133 **Hypothesis 3** *For group work, “seniority-merit” wage system magnifies the positive difference
134 between routine and creative PPOE.*

135 Based on the above, our hypothesis-testing is organized as follows. First, by comparing an
136 individual and a group working formats, we inquire about their overall merits and demerits for
137 PPOE. Next, we conduct the comparative analysis for each of those formats (individual and group)
138 by examining the respective differences between routine and creative productivity, which we de-
139 note as D-PPOE. Finally, we run multiple regressions with individual- and group-D-PPOE as
140 dependent variables to understand the D-PPOE’s main drivers.

²Other studies like the one by Hodzic et al. (2024) use self-reported measurement of knowledge types.

141 3 Results

142 Our data set was sourced from the registered participants' pool of a web-based questionnaire
143 survey conducted by the Japan-based research organization Cross Marketing Inc in December
144 2020. During that time, the memories of the emergency lockdown caused by the spread of the
145 COVID-19 virus were still vivid, as the state of emergency in 19 out of 47 Japan's prefectures had
146 only been lifted in early October of the same year. Furthermore, numerous employees had kept
147 working remotely, and the prospects of returning to office were unclear.³ In fact, all our survey
148 subjects experienced both face-to-face and online working conditions. Our sample consists of 500
149 participants, which is partly determined by the budget and time constraints we face. Among the
150 respondents of the survey 200 are females and 300 – males. While 44 % of male subjects are
151 ordinary employees and 56 % are managers, the respective distribution for females is 78 % vs.
152 22 %. This inter-gender discrepancy partially reflects the real population phenomenon, whereby
153 a relatively small share of women occupy advanced corporate posts. Half of the respondents are
154 employed in SMEs (small and medium-sized enterprises) of “300~1000” workers, and another
155 half is equally divided between firms of “1000~4999” and “5000 or more” workers. While the
156 survey subjects belong to different employment types ranging from regular (53 %) to dispatch
157 workers (14 %), all of them have full-time contracts. Besides the questions about demographic-
158 and lifestyle-characteristics, our survey concentrates on the work satisfaction and productivity,
159 focusing on the perceptual differences between pre-pandemic era and COVID-19 period.

160 As seen from table 1 that includes summary statistics, most of the variables are ordered factors
161 taking integer values between “1” (negative extreme) and “5” (positive extreme). This corresponds
162 to the 5-point Likert scale of subjective perceptions related to online working environment. For
163 example, possible responses to the questions about the perceived productivity in an online envi-
164 ronment as compared to an office environment (PPOE) range from “productivity has significantly
165 decreased” (= 1) to “productivity has significantly increased” (= 5). The numeric variables in-
166 clude “Age,” “Pre-COVID income,” “Pre-COVID sleeping hours,” “Pre-COVID working hours”
167 and “Pre-COVID commuting hours.” Respondents' age distribution is displayed in figure B1. Ac-
168 cording to it, the mode value is 61 years old and the median value is 50.5 years old. This picture

³ At the same time, teleworking ratio among Japanese employees due to the COVID-19 outbreak was the lowest among the OECD states, standing at about 30 % as of July 2020 (Mori, 2021).

Table 1: Descriptive statistics

		Definition	N	Mean	Median	Min	Max	St. Dev.
Age		A variable that represents the age of a respondent.	500	48.462	50.5	23	69	11.965
Gender		A dummy variable that takes 1 if a respondent is male, otherwise 0.	500	1.4	1	1	2	0.490
FirmSize		A categorical variable that represents the size of a company.	500	2.546	2.5	1	4	1.076
Pre-COVID commuting hours		A variable that represents average daily commuting hours of a respondent before COVID-19 pandemic.	500	0.978	1	0	2.5	0.432
Education		A categorical variable that shows a respondent's educational level.	500	5.566	6	1	7	1.364
Pre-COVID income		A categorical variable that represents an annual salary of a respondent before COVID-19 pandemic. It ranges from “less than 1 million Japanese yen” (1) to “more than 10 million Japanese yen” (6).	500	4.148	4	1	6	1.090
Pre-COVID working hours		A variable that represents average daily working hours before COVID-19 pandemic.	500	8.495	8	2	20	1.400
Pre-COVID sleeping hours		A variable that represents average daily sleeping hours before COVID-19 pandemic.	500	6.138	6	1	8	1.104
Well-being		A composite variable that assesses the degree of respondent's well-being.	500	3.834	4	1	7	1.243
RIP		A variable that represents respondent's routine individual productivity in an online environment.	500	2.922	3	1	5	0.970
CIP		A variable that represents respondent's creative individual productivity in an online environment.	500	2.952	3	1	5	0.907
RGP		A variable that represents respondent's routine group productivity in an online environment.	500	2.732	3	1	5	0.877
CGP		A variable that represents respondent's creative group productivity in an online environment.	500	2.664	3	1	5	0.856
TeleProductivity		A variable that represents respondent's overall productivity in an online environment.	500	2.942	3	1	5	0.908
TeleComfort		A variable that represents the degree of respondent's comfort associated with working in an online environment.	500	3.408	3	1	5	1.004
WCT		A variable that represents the degree of respondent's willingness to continue teleworking upon the lifting of COVID-19-related restrictions.	500	3.566	4	1	5	1.241

169 resembles the real working population tendencies, whereby, as of 2020, most of the country's
170 workforce belonged to the age category of "45-54" years old, accounting for 16.26 % of Japan's
171 population (e-Stat, 2020). There are some notable links between our variables, as presented in
172 table 2. Among others, it shows high correlation ($r = 0.7$) between overall online productivity
173 and RIP (routine individual productivity). As expected, comfort of online environment is highly
174 correlated with the willingness to continue telework (WCT) in the aftermath of the pandemic
175 ($r = 0.67$) and with being more productive when working remotely ($r = 0.53$). In addition, we
176 can observe significant positive correlations between different domains of telework. Along with
177 demographic variables as well as the measurements of online productivity and satisfaction, we
178 also inquire about the type of remuneration system.

179 According to the results of the exploratory analysis, general perception of telework can be
180 described as follows. As figure 1(a) demonstrates, both men and women clearly find it comfortable
181 to work remotely. In agreement with this, figure 1(b) shows a strong positive trend in the WCT
182 even if the COVID-19 restrictions are lifted. The WCT is particularly high among females, 34 % of
183 whom choose the most affirmative answer. The respective figure of 24.7 % for males is also high.
184 Moreover, additional 24.5 % of females and 31.3 % of males express their WCT as "positive."
185 Similar tendencies are observed when disaggregating the sample into ordinary and managerial
186 ranks. In the context of the overall-positive assessment of remote work, it is interesting that
187 subjective perception of labor productivity is rather mixed, as figure 1(c) shows. In case of women,
188 it can be described as "ambivalent," with 27 % of female respondents holding an opinion that PPOE
189 has decreased, and 30.5 % thinking the opposite. Regarding men, the perception is negative, with
190 30.6 % of male respondents being critical regarding PPOE, and only 20.6 % holding a positive
191 opinion. All in all, it can be said that despite enjoying working remotely, most of the respondents
192 report decreased PPOE.

193 Next, we analyze productivity levels pertaining to different types of assignments in an online
194 environment as formulated in hypotheses 0, 1 and 2. In the context of hypothesis 0, as seen from
195 table 1 and figure 2, average individual PPOE is higher than average group PPOE, irrespectively
196 of the type of assignment. In order to verify that these differences are also statistically consistent
197 across the analyzed subjects, we run the Wilcoxon signed-rank test designed for a non-parametric
198 paired comparison of measurements taken from the same subjects. The null-hypothesis of the

Table 2: Pearson correlation matrix

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1. Age															
2. Gender	0.11*														
3. FirmSize	0.02	-0.05													
4. Pre-COVID commuting hours	0.06	0.14**	-0.05												
5. Education	-0.12**	0.26***	-0.02	0.02											
6. Pre-COVID income	0.18***	0.34***	0.09*	0.03	0.23***										
7. Pre-COVID working hours	-0.19***	0.14**	0.02	0.05	0.19***	0.21***									
8. Pre-COVID sleeping hours	-0.11*	0.09	-0.03	-0.19***	0.07	0.01	-0.17***								
9. RIP	-0.07	-0.07	-0.06	0.04	0.05	0.00	0.00	0.00							
10. CIP	-0.03	-0.01	0.00	-0.04	0.05	0.00	0.04	-0.10*	0.50***						
11. RGP	-0.08	-0.02	0.06	-0.08	0.03	0.03	0.00	0.00	0.35***	0.28***					
12. CGP	-0.03	-0.01	0.04	-0.01	0.01	-0.03	0.00	-0.07	0.36***	0.46***	0.48***				
13. Productivity	-0.10*	-0.08	-0.05	-0.05	0.05	0.05	0.02	0.02	-0.06	0.70***	0.51***	0.49***	0.50***		
14. TeleComfort	-0.07	0.02	0.03	-0.02	0.04	0.13**	0.04	0.04	-0.05	0.52***	0.38***	0.29***	0.29***	0.53***	
15. WCT	-0.17***	-0.05	0.07	0.06	0.13***	0.12**	0.12**	-0.11*	0.49***	0.37***	0.26***	0.28***	0.53***	0.67***	
16. Well-being	0.07	0.03	0.05	-0.07	0.00	0.13**	-0.08	0.14**	0.00	0.04	-0.05	-0.02	0.07	0.17***	0.02

Note: *** $p < 0.001$; ** $p < 0.01$; * $p < 0.05$

Figure 1: Subjective perceptions of telework

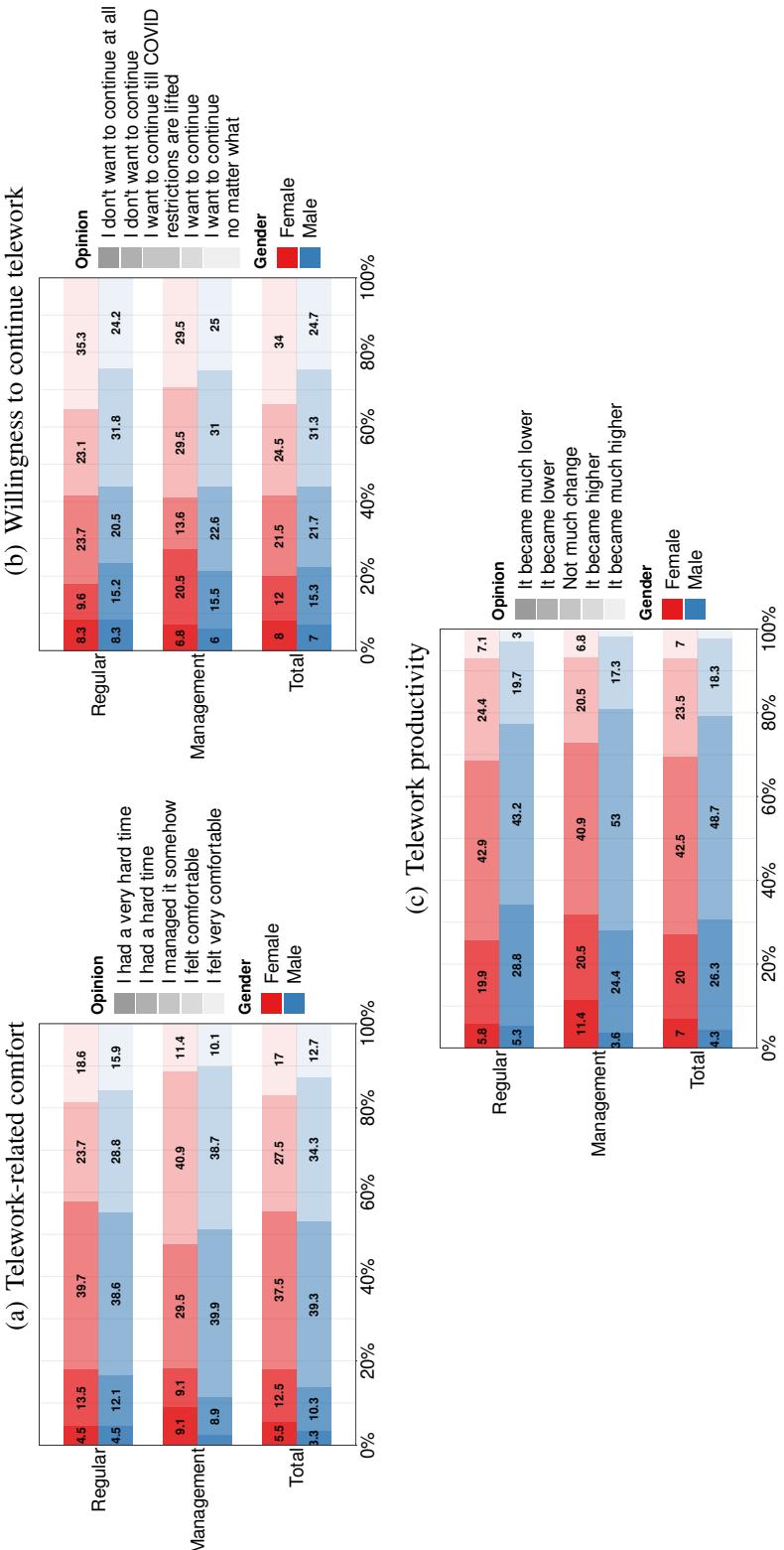
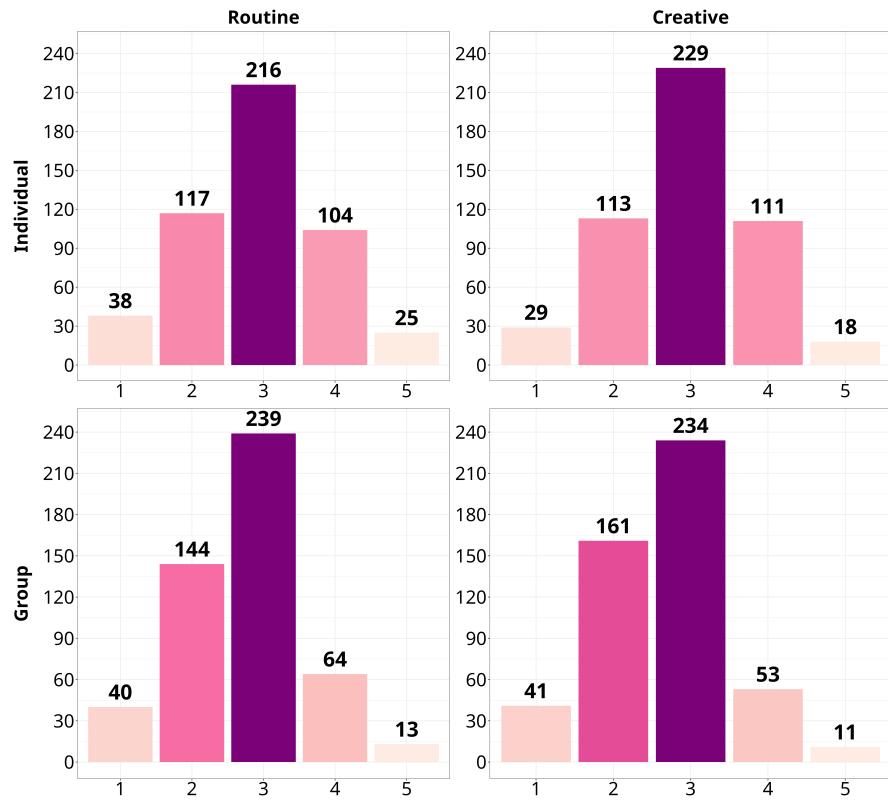



Figure 2: Perceived online productivity: variations across main domains (“1” — lowest score, “5” — highest score)

199 one-tailed Wilcoxon test states that individual PPOE is less or equal to group PPOE. The results
 200 show that the null hypothesis of the Wilcoxon signed-rank test is rejected at 1 % level both for the
 201 comparisons between routine (RIP vs. RGP) and creative (CIP vs. CGP) assignments. In other
 202 words, individual PPOE is greater than group PPOE irrespective of the type of task, hence the
 203 hypothesis 0 is confirmed. On the subject of hypothesis 1, we run the two-tailed Wilcoxon signed-
 204 rank test with the following null-hypothesis: individual D-PPOE is not significantly different from
 205 zero. As the null-hypothesis cannot be rejected ($p > 0.1$), hypothesis 1 is confirmed, meaning
 206 that for individual work, there is no significant difference between routine and creative PPOE.
 207 Moving on to hypothesis 2, in order to verify, whether the positive mean value for group D-PPOE
 208 inferred from table 1 is statistically significant, we run one-tailed Wilcoxon signed-rank test with
 209 the following null-hypothesis: group D-PPOE is less or equal to zero. The results of the test show
 210 that the null hypothesis is rejected at 5 % level, meaning that group D-PPOE is statistically greater
 211 than zero, confirming hypothesis 2. In other words, for group work, creative PPOE is statistically
 212 lower than routine PPOE.

213 The obtained results invite further inquiry about the factors responsible for positive group D-
214 PPOE as well as for individual D-PPOE being not significantly different from zero. Based on this,
215 we run linear regressions with group and individual D-PPOE as dependent variables respectively,
216 presenting the results in table A1. According to it, only few predictors are suited to explain the D-
217 PPOE. Namely, an additional pre-COVID commuting hour corresponds to 0.21-point increase in
218 individual D-PPOE when holding other independent variables fixed. In addition, when controlling
219 for other covariates, females register 0.17-point higher individual D-PPOE than males. Finally,
220 respondents with high pre-COVID income levels also tend to display high group D-PPOE. Overall,
221 the independent variables at our disposal are clearly not enough to adequately interpret the variance
222 within D-PPOE. Among others, we do not see any significant influence of a remuneration system
223 on group D-PPOE, hence hypothesis 3 is not confirmed.

224 Since we do not find significant determinants of D-PPOE, we run additional regressions for
225 each PPOE separately, reporting the results in table 3. First, as expected, employees that experi-
226 enced few sleeping hours prior to the pandemic display high levels of individual PPOE. Second,
227 following up on hypothesis 3, our most notable finding is that, irrespective of the assignment type,
228 employees under a “seniority-merit” wage system display consistently lower levels (more than 0.2
229 points on the 5-point Likert scale) of PPOE compared to the “performance-based” wage system.

230 As described above, despite reporting low PPOE, respondents nevertheless display high WCT.
231 Table 4 provides insights into the factors associated with WCT regardless of the pandemic-related
232 restrictions. First, along with our expectations, WCT is pronounced among females and young
233 people. Second, as we anticipated, employees who enjoyed less sleeping hours before the COVID-
234 19 pandemic tend to report high levels of WCT. Third, high WCT is pronounced among respon-
235 dents with relatively high educational degrees and income levels.

236 Since telework is associated with deterioration of inter-employee communications, this natu-
237 rally leads to difficulties for performing tasks in a group format, as argued in the hypothesis 0. At
238 the same time, our analysis does not show significantly positive or negative individual D-PPOE, as
239 postulated in the hypothesis 1. This reverberates the mixed evidence of online working environ-
240 ment being either a booster or an impedance for individual creativity (Liu et al., 2021). Provided
241 the challenges for virtual teams, we find that the detrimental effect of transition to telework is
242 positively mediated for groups who perform routine tasks, as postulated in hypothesis 2. Since

Table 3: PPOE regressions

	RIP	CIP	RGP	CGP
Wage system (<i>base group = “Performance-based”</i>)				
<i>Seniority-merit</i>	−0.25*** (0.09)	−0.22*** (0.09)	−0.23*** (0.08)	−0.23*** (0.08)
<i>Other</i>	−0.15 (0.20)	−0.10 (0.18)	−0.17 (0.18)	−0.19 (0.17)
Gender (<i>base group = “Female”</i>)	−0.16 (0.10)	0.02 (0.09)	0.03 (0.09)	0.04 (0.09)
Pre-COVID sleeping hours	−0.08* (0.04)	−0.10*** (0.04)	−0.01 (0.04)	−0.05 (0.04)
Education	0.05 (0.03)	0.05 (0.03)	0.01 (0.03)	0.01 (0.03)
Employment rank (<i>base group = “Managerial”</i>)				
<i>Regular</i>	0.08 (0.10)	0.00 (0.10)	0.17* (0.09)	0.12 (0.09)
Marital status (<i>base group = “Single”</i>)				
<i>Married</i>	−0.03 (0.10)	−0.11 (0.09)	−0.12 (0.09)	−0.02 (0.09)
Well-being	0.02 (0.04)	0.06* (0.03)	−0.03 (0.03)	0.00 (0.03)
Age	−0.01 (0.00)	−0.00 (0.00)	−0.00 (0.00)	−0.00 (0.00)
Pre-COVID income	0.03 (0.05)	−0.01 (0.04)	0.07 (0.04)	−0.02 (0.04)
Pre-COVID commuting hours	0.09 (0.10)	−0.12 (0.10)	−0.16* (0.09)	−0.05 (0.09)
<i>Intercept</i>	3.30*** (0.46)	3.53*** (0.43)	2.97*** (0.42)	3.15*** (0.41)
R ²	0.04	0.04	0.04	0.03
Adj. R ²	0.02	0.02	0.02	0.01
Num. obs.	500	500	500	500

 *** $p < 0.01$; ** $p < 0.05$; * $p < 0.1$

Table 4: WCT regressions

	Model 1	Model 2	Model 3
Wage system (<i>base group</i> = “ <i>Performance-based</i> ”)			
<i>Seniority-merit</i>	−0.13 (0.11)	−0.13 (0.11)	−0.17 (0.11)
<i>Other</i>	−0.27 (0.25)	−0.27 (0.25)	−0.10 (0.24)
Gender (<i>base group</i> = “ <i>Female</i> ”)	−0.22* (0.12)	−0.22* (0.13)	−0.27** (0.13)
Pre-COVID sleeping hours	−0.13** (0.05)	−0.13** (0.05)	−0.13*** (0.05)
Education	0.14*** (0.04)	0.14*** (0.04)	0.10** (0.04)
Employment rank (<i>base group</i> = “ <i>Managerial</i> ”)			
<i>Regular</i>	−0.00 (0.12)	0.09 (0.13)	
Marital status (<i>base group</i> = “ <i>Single</i> ”)			
<i>Married</i>	−0.04 (0.12)	0.03 (0.12)	
Well-being		0.04 (0.05)	
Age		−0.02*** (0.00)	
Pre-COVID income		0.19*** (0.06)	
Pre-COVID commuting hours		0.16 (0.13)	
<i>Intercept</i>	3.75*** (0.38)	3.77*** (0.40)	3.92*** (0.57)
R ²	0.04	0.04	0.09
Adj. R ²	0.03	0.03	0.07
Num. obs.	500	500	500

 *** $p < 0.01$; ** $p < 0.05$; * $p < 0.1$

243 only few predictors at our disposal are able to explain the variance in D-PPOE, we run four indi-
244 vidual regressions corresponding to each PPOE type. Among the most prominent factors behind
245 each PPOE domain is *seniority-merit* wage system that proxies tacit-knowledge-based supervision
246 style. Differently from the initially postulated hypothesis 3 about the adverse effect of seniority-
247 merit wages on group creative performance, the recipients of seniority-merit wages experience
248 greater drop in productivity compared to those under a “performance-based” system *uniformly*.

249 Despite the decline in PPOE across all domains, transition to an online working environment
250 has been welcomed by most of the employees, translating into high WCT. Following factors are
251 important in this regard. First (i), WCT is pronounced among females, which can be explained
252 by their high involvement in domestic chores and childcare. Second (ii), respondents with high
253 educational degrees and income also display high WCT, which might be due to their hitherto high
254 pre-COVID telecommuting frequency (Noonan and Glass, 2012) that safeguarded them from po-
255 tentially stressful experiences upon the mandatory telework transition post-2019. Finally, in line
256 with Gerold et al. (2024), workers who had few sleeping hours prior to the pandemic show high
257 levels of both WCT and individual PPOE. We identify the discrepancy between high WCT and low
258 PPOE as a “telework dilemma.” On one hand, our results speak to the importance of maintaining
259 employees’ physical and mental health for enhancing their job satisfaction (Lister and Harnish,
260 2019). Granting the legacy of long working hours in countries like Japan (Mizunoya, 2002), at
261 least a partial transition to an online environment provides a favorable ground for tailoring an
262 optimal work-life balance (Bosua et al., 2013). On the other hand, our results demonstrate clear
263 challenges associated with carrying out group work remotely. Both the ubiquitous decrease in
264 PPOE among recipients of seniority-merit wages and the decline in group PPOE vis-à-vis indi-
265 vidual PPOE point at the essential role of designing alternative ways of online knowledge transfer
266 (Cabrera and Cabrera, 2005, Taskin and Bridoux, 2010, Aksnes et al., 2023), which includes ad-
267 vance implementation of digital technologies (Greer and Payne, 2014, Yoshino and Hendriyetty,
268 2020).

269 **4 Conclusion**

270 In this paper, we pose the question of how “perceived productivity in an online environment
271 as compared to an office environment” (PPOE) changed depending on work formats (individ-
272 ual vs. group), tasks types (routine vs. creative) and remuneration systems (seniority-based vs.
273 performance-based). Let the PPOE difference between routine and creative tasks be “D-PPOE.”
274 To this end, we test the following hypotheses: (0) PPOE tends to be high for *individual* as com-
275 pared to *group* work, (1) *individual* D-PPOE is not significantly different from zero, (2) D-PPOE
276 is positive for *group* work, (3) D-PPOE is positively affected by the seniority-merit wage sys-
277 tem. By running non-parametric Wilcoxon signed-rank test, we obtain the following findings.
278 First, in relation to hypothesis 0, PPOE is higher for individual than for group work. Next, in
279 respect to hypothesis 1 we establish that individual D-PPOE is not significantly different from
280 zero. Furthermore, in the context of hypothesis 2, we find that D-PPOE is positive for group work.
281 These results have the following implications. Under normal circumstances, group work, espe-
282 cially creative one, is carried out most effectively in a face-to-face environment. However, due to
283 COVID-19-inflicted transition to telework, customary inter-employee interactions were disrupted,
284 leading to decreased group PPOE. At the same time, employees were able to maintain decent lev-
285 els of individual PPOE that appears equally resilient for routine and creative assignments. Finally,
286 in respect to hypothesis 3, although we find no evidence of seniority-based pay explaining posi-
287 tive D-PPOE for group work, we discover that PPOE *unequivocally* drops among the recipients of
288 seniority-merit wages. We include this remuneration system as a proxy of a tacit-knowledge-based
289 supervision, and argue that it is difficult to sustain this type of oversight in an online environment.
290 Additionally, we find that, despite displaying overall low levels of PPOE, respondents express
291 their willingness to continue teleworking (WCT), which leads to a so-called “telework dilemma.”
292 It invites the development of a mixed-format working system, in which employees can remain
293 productive remotely at least as much as in an office, even when performing collaborative, creative
294 tasks.

295 Lastly, we note the limitations of the current study and the prospects for future research. Sub-
296 jective self-assessment of online productivity that we use would be more credible, had it been com-
297 bined with evaluation from corporate superiors. Furthermore, as our paper identified the problem

298 of conducting group work in an online environment, it would be logical to include the variables
299 related to horizontal (between employees of a same rank) and vertical (between managers and
300 ordinary employees) communication quality. This would align the prospective study with the rec-
301 ommendation by Salas et al. (2008) to use context-specific measurements of team performance.
302 On top of this, while distinguishing between the types of online assignments, our paper would
303 benefit from additionally covering industrial differences as well as degrees of corporate digitaliza-
304 tion.

References

Aksnes, S., Underthun, A., and Hansen, P. (2023). Constructing new organizational identities in a post-pandemic return: Managerial dilemmas in balancing the spatial redesign of telework with workplace dynamics and the external imperative for flexibility. In Bergum, S., Peters, P., and Vold, T., editors, *Virtual Management and the New Normal: New Perspectives on HRM and Leadership since the COVID-19 Pandemic*, pages 59–78. Springer International Publishing, Cham.

Allen, T., Golden, T., and Shockley, K. (2015). How effective is telecommuting? Assessing the status of our scientific findings. *Psychological science in the public interest*, 16:40–68.

Amabile, T., Amabile, T., Collins, M., Conti, R., Phillips, E., Picariello, M., Ruscio, J., and Whitney, D. (1996). The meaning and measurement of creativity. In *Creativity in Context*, pages 19–40. Routledge.

Bailey, D. and Kurland, N. (2002). A review of telework research: Findings, new directions, and lessons for the study of modern work. *Journal of organizational behavior*, 23:383–400.

Baruch, Y. (2000). Teleworking: Benefits and pitfalls as perceived by professionals and managers. *New technology, work and employment*, 15:34–49.

Bayo-Moriones, A., Galdon-Sanchez, J., and Güell, M. (2010). Is seniority-based pay used as a motivational device? Evidence from plant-level data. In W. Polacheck, S. and Tatsiramos, K., editors, *Jobs, Training, and Worker Well-being*, volume 30 of *Research in Labor Economics*, pages 155–187. Emerald Group Publishing Limited.

Bosua, R., Gloet, M., Kurnia, S., Mendoza, A., and Yong, J. (2013). Telework, productivity and wellbeing: An Australian perspective. *Telecommunications journal of Australia*, 63:11.1–11.12.

Brucks, M. and Levav, J. (2022). Virtual communication curbs creative idea generation. *Nature*, 605:108–112.

Cabrera, E. and Cabrera, A. (2005). Fostering knowledge sharing through people management practices. *International journal of human resource management*, 16:720–735.

Cadsby, B., Song, F., and Tapon, F. (2017). Sorting and incentive effects of pay for performance: An experimental investigation. *Academy of management journal*, 50:387–405.

Caillier, J. (2013). Satisfaction with work-life benefits and organizational commitment / job involvement: Is there a connection? *Review of public personnel administration*, 33:340–364.

Capecchi, S., Di Iorio, F., and Nappo, N. (2024). Occupational stress, working from home, and job sustainability: Another gender issue? *Social indicators research*, 175:1193–1218.

Cira, D. and Benjamin, E. (1998). Competency-based pay: A concept in evolution. *Compensation and benefits review*, 30:21–28.

Cohen, S. and Bailey, D. (1997). What makes teams work: Group effectiveness research from the shop floor to the executive suite. *Journal of management*, 23:239–290.

de Leede, J. and Nijland, J. (2016). Understanding teamwork behaviors in the use of new ways of working. In *New Ways of Working Practices*, volume 16 of *Advanced Series in Management*, pages 73–94. Emerald Group Publishing Limited.

Dingel, J. and Neiman, B. (2020). How many jobs can be done at home? *Journal of public economics*, 189:104235.

DuBrin, A. (1991). Comparison of the job satisfaction and productivity of telecommuters versus in-house employees: A research note on work in progress. *Psychological reports*, 68:1223–1234.

Dutcher, G. (2012). The effects of telecommuting on productivity: An experimental examination. The role of dull and creative tasks. *Journal of economic behavior and organization*, 84:355–363.

e-Stat (2020). Population census. Technical report, Statistics Bureau of Japan.

Etheridge, B., Wang, Y., and Tang, L. (2020). Worker productivity during lockdown and working from home: Evidence from self-reports. Working Paper 2020-12, ISER Working Paper Series.

Gajendran, R. and Harrison, D. (2007). The good, the bad, and the unknown about telecommuting: Meta-analysis of psychological mediators and individual consequences. *Journal of applied psychology*, 92:1524–1541.

Galanti, T., Guidetti, G., Mazzei, E., Zappalà, S., and Toscano, F. (2021). Work from home during the COVID-19 outbreak. *Journal of occupational and environmental medicine*, 63:426–432.

Garro-Abarca, V., Palos-Sanchez, P., and Aguayo-Camacho, M. (2021). Virtual teams in times of pandemic: Factors that influence performance. *Frontiers in Psychology*, 12.

Gerold, S., Buhl, J., and Geiger, S. M. (2024). How to enhance time wealth? Insights from changes in time use and working conditions during the COVID-19 lockdown in Germany. *Social indicators research*, 171:349–371.

Golden, T. (2006). Avoiding depletion in virtual work: Telework and the intervening impact of work exhaustion on commitment and turnover intentions. *Journal of vocational behavior*, 69:176–187.

Golden, T., Veiga, J., and Simsek, Z. (2006). Telecommuting's differential impact on work-family conflict: Is there no place like home? *Journal of applied psychology*, 91:1340–1350.

Greer, T. and Payne, S. (2014). Overcoming telework challenges: Outcomes of successful telework strategies. *Psychologist-manager journal*, 17:87–111.

Hackman, R. (2012). From causes to conditions in group research. *Journal of organizational behavior*, 33:428–444.

Han, S., Chae, C., Macko, P., Park, W., and Beyerlein, M. (2017). How virtual team leaders cope with creativity challenges. *European journal of training and development*, 41:261–276.

Hodzic, S., Prem, R., Nielson, C., and Kubicek, B. (2024). When telework is a burden rather than a perk: The roles of knowledge sharing and supervisor social support in mitigating adverse effects of telework during the COVID-19 pandemic. *Applied psychology*, 73:599–621.

Hon, A. (2012). When competency-based pay relates to creative performance: The moderating role of employee psychological need. *International journal of hospitality management*, 31:130–138.

Illegems, V. and Verbeke, A. (2004). Telework: What does it mean for management? *Long range planning*, 37:319–334.

Ishii-Kunz, M. (2025). "Shussha kaiki" wa seikai ka? Hataraku basho no imi o kangaeru [Is "returning to the office" the right answer? Considering the meaning of the place of work]. *Nikkei Keizai Shinbun [Japan Economics Newspaper]*.

Khalifa, M. and Davison, R. (2000). Viewpoint: Exploring the telecommuting paradox. *Communications of the ACM*, 43:29–31.

Kozlowski, S. and Klein, K. (2000). A multilevel approach to theory and research in organizations: Contextual, temporal, and emergent processes. In *Multilevel Theory, Research, and Methods in Organizations: Foundations, Extensions, and New Directions*, pages 3–90. Jossey-Bass/Wiley, Hoboken, NJ, US.

Lazear, E. (2000). Performance pay and productivity. *American economic review*, 90:1346–1361.

Lisbona, A., Las-Hayas, A., Palací, F., Bernabé, M., Morales, F., and Haslam, A. (2020). Team efficiency in organizations: A group perspective on initiative. *International journal of environmental research and public health*, 17:1926.

Lister, K. and Harnish, T. (2019). Telework and its effects in the United States. In Messenger, J., editor, *Telework in the 21st Century*, chapter 3, pages 128–170. Edward Elgar Publishing.

Liu, L., Wan, W., and Fan, Q. (2021). How and when telework improves job performance during COVID-19? Job crafting as mediator and performance goal orientation as moderator. *Psychology research and behavior management*, 14:2181–2195.

Mahler, J. (2012). The telework divide: Managerial and personnel challenges of telework. *Review of public personnel administration*, 32:407–418.

Mak, S. and Kozlowski, S. (2019). Virtual teams: Conceptualization, integrative review, and research recommendations. In Landers, R. N., editor, *The Cambridge Handbook of Technology and Employee Behavior*, Cambridge Handbooks in Psychology, pages 441–479. Cambridge University Press, Cambridge.

Martin, B. and MacDonnell, R. (2012). Is telework effective for organizations? A meta-analysis of empirical research on perceptions of telework and organizational outcomes. *Management research review*, 35:602–616.

Martínez-Sánchez, A., Pérez-Pérez, M., De-Luis-Carnicer, P., and Vela-Jiménez, M. (2007). Telework, human resource flexibility and firm performance. *New technology, work and employment*, 22:208–223.

Martins, L. and Shalley, C. (2011). Creativity in virtual work: Effects of demographic differences. *Small group research*, 42:536–561.

McPhail, R., Chan, X. W. C., May, R., and Wilkinson, A. (2024). Post-COVID remote working and its impact on people, productivity, and the planet: An exploratory scoping review. *International journal of human resource management*.

Mercier, M., Vinchon, F., Pichot, N., Bonetto, E., Bonnardel, N., Girandola, F., and Lubart, T. (2021). COVID-19: A boon or a bane for creativity? *Frontiers in psychology*, 11:601150.

Mizunoya, T. (2002). An international comparison of unpaid overtime work among industrialized countries. Technical report, International Labour Organization.

Mori, T. (2021). The coronavirus pandemic and the increase of teleworking in eight countries. Report, Nomura Research Institute.

Nonaka, I. (2007). The knowledge-creating company. *Harvard business review*, July–August:162–171.

Noonan, M. and Glass, J. (2012). The hard truth about telecommuting. *Monthly labor review*, 135:38.

Okubo, T. (2020). Spread of COVID-19 and telework: Evidence from Japan. *Covid economics*, 32:1–25.

Overmyer, S. (2011). Implementing telework: Lessons learned from four federal agencies. *IBM Center for The Business of Government*, Spring–Summer:99–102.

Polanyi, M. (1966). The logic of tacit inference. *Philosophy*, 41:1–18.

Pyöriä, P. (2011). Managing telework: Risks, fears and rules. *Management research review*, 34:386–399.

Roberts, J. (2000). From know-how to show-how? Questioning the role of information and communication technologies in knowledge transfer. *Technology analysis & strategic management*, 12:429–443.

Ruth, S. and Chaudhry, I. (2008). Telework: A productivity paradox? *IEEE Internet computing*, 12:87–90.

Salas, E., Cooke, N., and Rosen, M. (2008). On teams, teamwork, and team performance: Discoveries and developments. *Human factors*, 50:540–547.

Salas, E., Shuffler, M., Thayer, A., Bedwell, W., and Lazzara, E. (2015). Understanding and improving teamwork in organizations: A scientifically based practical guide. *Human resource management*, 54:599–622.

Shabanzpour, R., Golshani, N., Tayarani, M., Auld, J., and Mohammadian, A. (2018). Analysis of telecommuting behavior and impacts on travel demand and the environment. *Transportation research part D*, 62:563–576.

Taskin, L. and Bridoux, F. (2010). Telework: A challenge to knowledge transfer in organizations. *International journal of human resource management*, 21:2503–2520.

Taskin, L. and Devos, V. (2005). Paradoxes from the individualization of human resource management: The case of telework. *Journal of business ethics*, 62:13–24.

Tønnesen, Ø., Dhir, A., and Flåten, B.-T. (2021). Digital knowledge sharing and creative performance: Work from home during the COVID-19 pandemic. *Technological forecasting and social change*, 170:120866.

Umishio, W., Kagi, N., Asaoka, R., Hayashi, M., Sawachi, T., and Ueno, T. (2022). Work productivity in the office and at home during the COVID-19 pandemic: A cross-sectional analysis of office workers in Japan. *Indoor air*, 32:e12913.

van der Lippe, T. and Lippéyi, Z. (2020). Co-workers working from home and individual and team performance. *New technology, work and employment*, 35:60–79.

van der Meulen, N., van Baalen, P., van Heck, E., and Mülder, S. (2019). No teleworker is an island: The impact of temporal and spatial separation along with media use on knowledge sharing networks. *Journal of information technology*, 34:243–262.

Vega, R., Anderson, A., and Kaplan, S. (2015). A within-person examination of the effects of telework. *Journal of business and psychology*, 30:313–323.

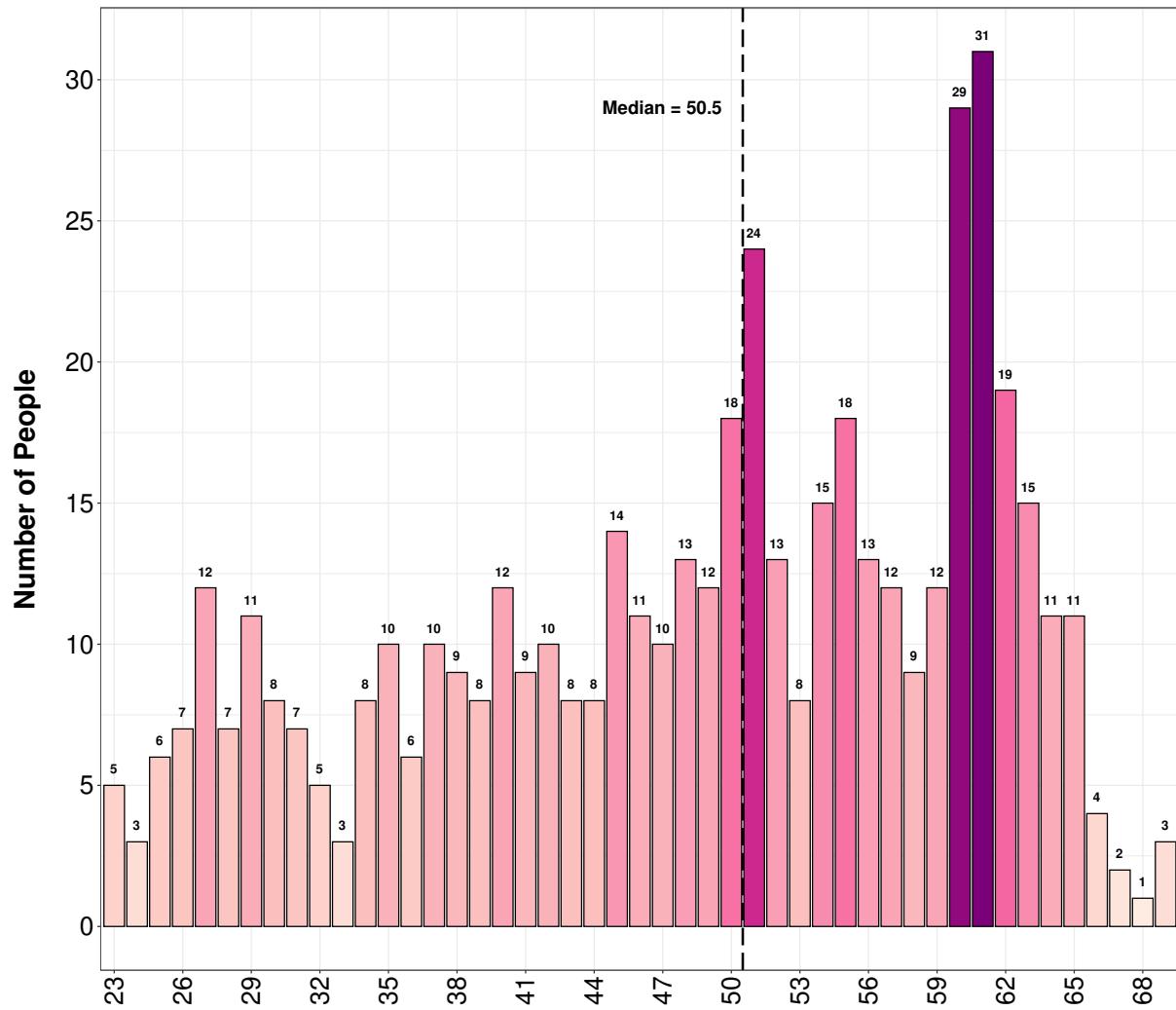
Waizenegger, L., McKenna, B., Cai, W., and Bendz, T. (2020). An affordance perspective of team collaboration and enforced working from home during COVID-19. *European journal of information systems*, 29:429–442.

Welz, C. and Wolf, F. (2010). Telework in the European Union. In *European Foundation for the Improvement of Living and Working Conditions*, volume EF/09/96/EN, pages 1–28.

Yoshino, N. and Hendriyetty, N. (2020). The COVID-19 crisis: Policy recommendations for Japan. *Economists' voice*, 17:20200017.

Zhou, J. and Shalley, C. (2011). Deepening our understanding of creativity in the workplace: A review of different approaches to creativity research. In *APA Handbook of Industrial and Organizational Psychology, Vol 1: Building and Developing the Organization*, APA Handbooks in Psychology®, pages 275–302. American Psychological Association, Washington, DC, US.

A Supplementary tables


Table A1: D-PPOE regressions

	Individual D-PPOE	Group D-PPOE
Wage system (<i>base group</i> = “ <i>Performance-based</i> ”)		
<i>Seniority-merit</i>	−0.03 (0.09)	0.00 (0.08)
<i>Other</i>	−0.05 (0.19)	0.01 (0.18)
Gender (<i>base group</i> = “ <i>Female</i> ”)	−0.17* (0.10)	−0.01 (0.09)
Pre-COVID sleeping hours	0.03 (0.04)	0.04 (0.04)
Education	0.00 (0.03)	−0.00 (0.03)
Employment rank (<i>base group</i> = “ <i>Managerial</i> ”)		
<i>Regular</i>	0.07 (0.10)	0.05 (0.09)
Marital status (<i>base group</i> = “ <i>Single</i> ”)		
<i>Married</i>	0.08 (0.10)	−0.10 (0.09)
Well-being	−0.03 (0.04)	−0.03 (0.03)
Age	−0.00 (0.00)	−0.00 (0.00)
Pre-COVID income	0.04 (0.05)	0.08* (0.04)
Pre-COVID commuting hours	0.21** (0.10)	−0.11 (0.10)
<i>Intercept</i>	−0.23 (0.45)	−0.18 (0.43)
R ²	0.02	0.02
Adj. R ²	−0.00	−0.00
Num. obs.	500	500

*** $p < 0.01$; ** $p < 0.05$; * $p < 0.1$

B Supplementary figures

Figure B1: Age distribution

