

Social Design Engineering Series

SDES-2025-6

Accountability and righteousness

Rahman Md. Mostafizur

School of Economics and Management, Kochi University of Technology, Japan Department of Agricultural Marketing and Business Management, Sylhet Agricultural University, Bangladesh

Munehiro Yokota GIKEN LTD., Japan

Raja Rajendra Timilsina

Asian Development Bank Institute

Koji Kotani

School of Economics and Management, Kochi University of Technology, Japan Research Institute for Future Design, Kochi University of Technology, Japan Urban Institute, Kyushu University, Japan Urban Institute, Kyusyu University College of Business, Rikkyo University, Japan

November 12, 2025

School of Economics and Management Research Institute for Future Design Kochi University of Technology

KUT-SDE working papers are preliminary research documents published by the School of Economics and Management jointly with the Research Center for Social Design Engineering at Kochi University of Technology. To facilitate prompt distribution, they have not been formally reviewed and edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The views and interpretations expressed in these papers are those of the author(s). It is expected that most working papers will be published in some other form.

Accountability and righteousness

Rahman Md. Mostafizur*,† Munehiro Yokota‡ Raja Rajendra Timilsina§

Koji Kotani*,¶,,**,††

November 12, 2025

Abstract

Winners behaviors toward losers are important determinants for evolution of fairness and inequality in societies. However, little is known about how inequality arises from the status quo of equality and winners righteously act to losers. This research considers the accountability, investigating the question "how asking people to be accountable for decisions influence their behaviors toward losers as they are winners by chance?" and the hypothesis "being accountable induces winners to behave righteously to losers." We institute the control winner's righteousness game (WRG) in a group of three subjects with equal endowments and conduct a laboratory experiment with 297 subjects, consisting of three steps. First, each subject decides how much to take endowments from losers as she is a winner. Second, a lottery determines whether she becomes a winner or a loser. Third, she takes the endowment from each loser following her decisions in the 1st step if she is a winner. Otherwise, her endowment shall be taken by each winner. Two additional treatments are prepared: (i) intragenerational accountability (IAA) and (ii) intergenerational accountability (IRA). Every subject is asked to be accountable for her "take" decisions, providing the reasons and advice to unknown others that will play WRG later as the same generation in IAA and as the subsequent generations with a generational lineup in IRA. Results indicate that IAA and IRA affect subjects not to take endowments from losers as compared to the control, and the "take" reduction in IRA is twice as much as that in IAA. Overall, when people are held accountable for their decisions across generations they righteously behave to enhance both intragenerational and intergenerational fairness.

Keywords: Righteousness; Intragenerational accountability; Intergenerational accountability

^{*}School of Economics and Management, Kochi University of Technology, Japan

[†]Department of Agricultural Marketing and Business Management, Sylhet Agricultural University, Bangladesh [‡]GIKEN LTD.. Japan

[§] Asian Development Bank Institute

[¶]Research Institute for Future Design, Kochi University of Technology, Japan

Urban Institute, Kyushu University, Japan

^{**}College of Business, Rikkyo University, Japan

^{††}Corresponding author, E-mail: kojikotani757@gmail.com

Contents

1 l	Intr	oduction	3
2	Met l 2.1 2.2	hods Experimental design and procedures	6 6 11
3 1	Exp	erimental results	13
4 (Con	clusion	21
5 A	App	endix	22
6 A	Ack	nowledgments	23
No	me	enclature	
ESG	i E	Environmental, social and governance	
ETs	1 E	Endowment takes in the case of one winner	
ETs	2 E	Endowment takes in the case of two winners	
IAA	I	ntragenerational accountability	
IRA	Iı	ntergenerational accountability	
IS	Iı	ntergenerational sustainability	
JPY	J	apanese yen	
OLS	S C	Ordinary least squares	
SVC	S	Social value orientation	
USE) (JS dollar	
WR	G V	Vinners righteousness game	

1 Introduction

Nearly all men can stand adversity but if you want to test a man's character, give him power, 2 this is the supreme test (Ingersholl, 1895). The assertion suggests that individuals possess an incentive to abuse their power and this can have far-reaching effects on societies (Vredenburgh and Brender, 1998). Often, the exercise of power leads to a few entities misusing various resources, resulting in inefficient and/or unfair situations (Fearon, 2004, Powell, 2004, Lancet, 2006). Such misuse of power can also be considered the causes of many social problems, such as corruption, inequality and conflicts, and there are many real-world examples of how those who have power to prodigiously make decisions affect powerless people and a whole economy (Sidanius and Pratto, 2012, Jetten et al., 2017). Such powerful or powerless people can be interpreted to get determined as "winners" or "losers" by chance from the status quo of equality due to the capitalist narrative that 11 has been posed by societies (Gupta et al., 2002, De Nardi and Fella, 2017, Frank, 2016, Alvaredo 12 et al., 2017). As a consequence, how winners behave towards losers can be a reflection of candor in a society, being important determinants for evolution of fairness and inequality (Williamson, 2008, Hossain and Ali, 2014, Burns, 2017). It is for this reason that this paper experimentally examines how inequality arises from an original situation of equality and winners behave "righteously" towards losers. 17

Decision making of winners towards losers is influenced by their valuation of what is considered just or fair (Konow, 1996, Nowak et al., 2000, Butler et al., 2011). The concept of fairness or righteousness in winner-loser settings is studied in economic literature, and there are some examples that emulate winners' regards and behaviors for losers in experimental economics, such as dictator and solidarity games (Schotter et al., 1996, Bolton et al., 1998, Selten and Ockenfels, 1998, Camerer, 2003, Schurter and Wilson, 2009, Engel, 2011, Forgas and Tan, 2013, Konow et al., 2020, Grech et al., 2022, Cartwright and Thompson, 2023, Goerres and Eicheler, 2025). A laboratory experiment conducted by Servátka (2010) investigates the influence of information regarding a paired subject's prior actions on individual behaviors within a non-strategic context of a dictator game, revealing that, on average, dictators allocate more funds to recipients known for their

generosity compared to those lacking a reputation. Ouvrard et al. (2025) examines the preferences
of Indian farmers concerning surface water allocation by employing a dictator game in lab-in-thefield experimental contexts. Their findings indicate that participants prefer to provide less water
to downstream farmers than to upstream ones, and that effective water allocation behaviors can be
elicited by altering the choice architecture, namely through loss framing.

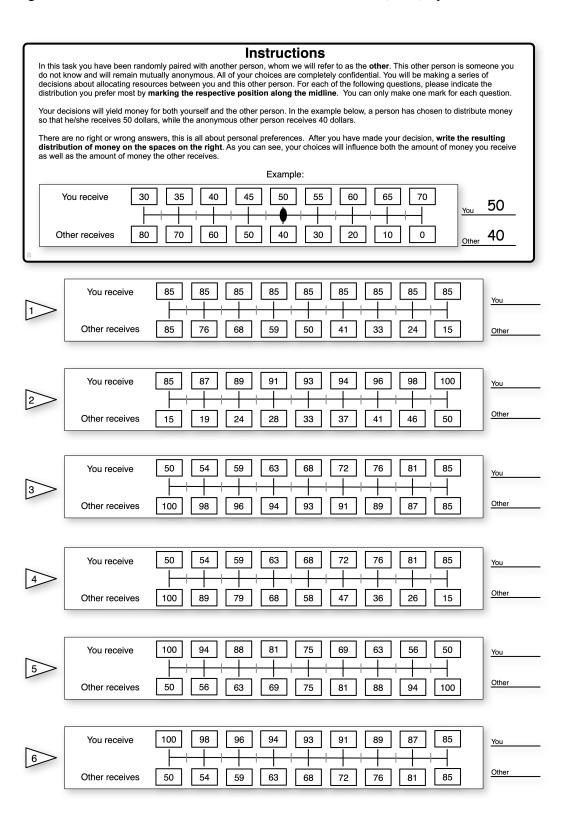
In solidarity games, Selten and Ockenfels (1998) investigates how "probabilistic winners" give
their money to "probabilistic losers" in a three-person laboratory setting.¹ This game incorporates
a motivational aspect of confidence in reciprocity, distinguishing it from the dictator game. The
majority of individuals are inclined to offer significant conditional donations to losers if they are
winners by chance, taking into account educational, gender, and false consensus effects. A study
by Oliveira et al. (2014) examines voluntary informal risk sharing through a graphic representation
of the solidarity game designed for low-literacy people in field experiments including low-income
participants in Texas. Their findings reveal much greater instances of "fixed gift to loser" behavior and less "egotistical" behavior compared to earlier studies. While the dictator and solidarity
games demonstrate "giving behaviors" by winners to losers, limited number of papers study the
"taking behaviors" that can mirror the winner-take-all societies (Frank and Cook, 1995, List, 2007,
Bardsley, 2008, Dreber et al., 2013, Korenok et al., 2014, Flage, 2024).

Accountability, which entails providing justifications for one's acts, can affect both the content and manner of individuals' thinking, potentially diminishing decision makers' vulnerability to many prevalent judgment and choice errors (Simonson and Nye, 1992, Konow, 2000, Salisbury et al., 2022, Scobie et al., 2025). The accountability principle asserts that the extent of equitable distributions is contingent upon the relevant variables subject to individual influence (e.g., actionwork effort) while those beyond individual control (e.g., congenital physical disabilities) are often excluded from consideration (Konow, 2000). As part of public and social communication for self-governance, "reasons" and "advice" are two crucial components of accountability (Mulgan, 2000, Wagner, 2005). A lab-in-the-field experiment of intergenerational sustainability (IS)

¹In a group of three subjects, a lottery decides who becomes winners or losers, and then the probabilistic winners are allowed to give their endowments to losers.

dilemma games by Timilsina et al. (2023) investigates the efficacy of intergenerational accountability (IRA) in preserving IS, revealing that IRA encourages generations to select the sustainable
option through positive reasons and advice. Gan et al. (2025) examines the influence of environmental auditing on the environmental, social and governance (ESG) performance of A-share listed
Chinese businesses from 2009 to 2021, employing a multi-period double-difference model to elucidate its underlying mechanisms. Their findings indicate that post-event accountability through
environmental audits can enhance corporate ESG performance for firms. Nonetheless, accountability serves as a unidirectional communication mechanism between groups for intragenerational
situations and from the current generation to subsequent generations for intergenerational contexts
(Timilsima et al., 2019).

Previous research has focused primarily on examining decision making of winners towards 64 losers in various game settings through demonstrating giving behaviors of winners. Few studies have documented winners taking behaviors and studied how some interventions, such as accountability, affect people to act righteously to losers as they are winners by chance. Some present research have extended a grate potential of accountability to boost adherence and people thinking through reducing decision errors (Salisbury et al., 2022, Timilsina et al., 2023). In this study, we focus on examining the possible impacts on winners behaviors towards losers by accountability interventions as an laboratory experiment because the winner's righteousness will characterize how good the society or organizations are. Therefore, we pose a question "how asking people to be accountable for decisions influence their behaviors toward losers as they are winners by chance?", hypothesizing that being accountable induces winners to behave righteously to losers. We design and institute the control winner's righteousness game (WRG) in a group of three subjects with equal endowment and conduct a laboratory experiment with 297 subjects in Japan, examining the impact of two treatments on subjects endowment taking behaviors: (i) intragenerational accountability (IAA) and (ii) intergenerational accountability (IRA). Addressing this question and hypothesis will be beneficial for inducing winners to act righteously to losers for both intragenerational and intergenerational fairness in winner-take-all societies.


2 Methods

2.1 Experimental design and procedures

The experiments were conducted in the computerized experimental laboratories of Kochi Uni-83 versity of Technology, Kochi Prefectural University and Kochi University. The experiments con-84 sisted of 12 sessions, each comprising 20 to 30 subjects, totaling 297 subjects. The subjects were 85 volunteer undergraduate students from different disciplines, including economics, engineering and management. Each subject engaged in a single session lasting roughly 1.5 hours, receiving an 87 average cumulative payoff of 2000 JPY. The subjects exhibit adequate homogeneity throughout the three treatments, characterized by comparable age ranges and a balanced male-to-female ratio, 89 hence providing consistency among the experimental groups. Each session is split into three parts. The 1st part entails participating in a social value orientation (SVO) game. The 2nd part is a winner's righteousness game (WRG). The 3rd part comprises a questionnaire survey that gathers sociodemographic data. The 1st and 3rd parts are identical across all sessions. The 2nd part differs by sessions, each randomly allocated to one of the three treatments: control WRG, intragenerational accountability (IAA) and intergenerational accountability (IRA). Each treatment comprises four sessions, with the fundamental techniques in each session adhering to prior literature, including Selten and Ockenfels (1998) and Timilsina et al. (2023). 97

An SVO game classifies each subject's social viewpoint as altruistic, prosocial, individualistic 98 or competitive types (Van Lange et al., 1997, 2007, Brosig et al., 2011, Carlsson et al., 2014, Sutters et al., 2018). A "slider method" is utilized to evaluate how subjects prioritize their advantages relative to others (Borghans et al., 2008, Murphy et al., 2011). Figure 1 indicates that subjects 101 reply to six aspects, each providing nine alternatives for allocating points between themselves and 102 an anonymous partner. Each subject selects one alternative for each item by marking a line at 103 the spot that signifies her desired allocation. The average distributions for the subject \overline{A}_s and the 104 partner \overline{A}_p are calculated from all six aspects. Then, 50 is deducted from \overline{A}_s and \overline{A}_p to reposition 105 the origin of the resultant angle to the center of the circle (50, 50). The SVO index of a subject 106

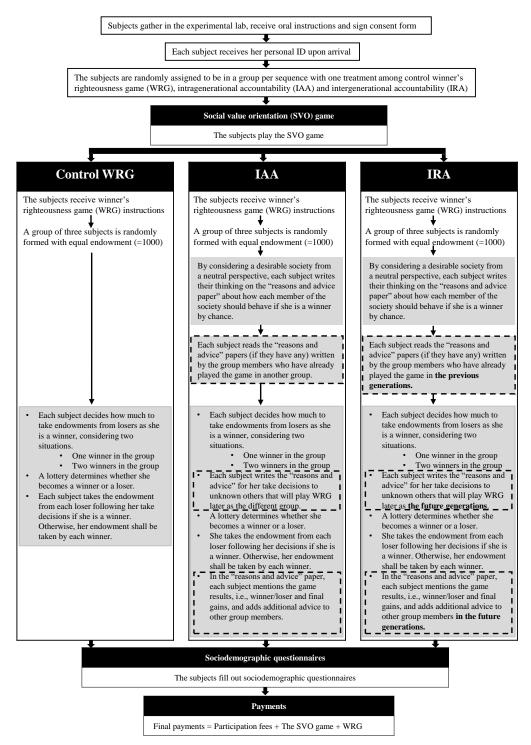
Figure 1: Instructions to measure social value orientation (SVO) by the slider method

is calculated as SVO = $\arctan\frac{(\overline{A}_p)-50}{(\overline{A}_s)-50}$. According to the SVO indices, social preferences are classified as altruistic (SVO > 57.15°), prosocial (22.45° < SVO < 57.15°), individualistic (-12.04° < SVO < 22.45°), and competitive (SVO < -12.04°). This study classifies "altruistic" and "prosocial" kinds as "prosocial" subjects, whereas "individualistic" and "competitive" types are labeled as "proself" (see Murphy et al., 2011).

In the laboratory WRG game, we adhere to the fundamental design and procedures established 112 by Selten and Ockenfels (1998). We implement the control WRG in a group of randomly assigned 113 three subjects, consisting of three steps. First, each member in a group have 1000 points as en-114 dowments and decides how much to take endowments from losers as she is a winner. In decision making, she considers two situations: (i) endowment takes in the case of one winner (ETs1) and (ii) endowment takes in the case of two winners (ETs2). Second, a lottery determines whether she becomes a winner (with an probability of 2/3) or a loser (with an probability of 1/3). In the 118 lottery, each member must role a dice and research assistants record the outcome, i.e., winner or 119 loser. The rule is that numbers one, two, three or four win, while five and six lose. Third, each 120 member in the group takes the endowment from each loser following her take decision in the 1st 121 step, provided she is a winner. Otherwise her endowment shall be taken by each winner. If the 122 lottery results for everyone "winner" or "loser," in a group, there will be no take decisions, taking 123 into account simply the initial endowment as the total points. For each group, the payoffs result-124 ing from winning or losing are calculated for all subjects. In the game, a dominant strategy or a 125 Nash equilibrium strategy for each winner subject is to take endowment 1000 points from each 126 loser, as it maximize her payoff, irrespective of other winner's take decisions in a group. A Pareto 127 optimal allocation includes any endowment takes by a winner from a loser such that increasing 128 a winner's take necessarily decreases the loser's endowments. Typical Pareto optimal allocations 129 are: (i) a winner takes all endowments from a loser (1000, 0), (ii) a winner takes nothing form a 130 losers (0, 1000) and (iii) any endowment takes, i.e., x, by a winner from a loser, where x is an 131 integer from 0 to 1000 (x, 1000 - x). 132

In the IAA, first, a group of three subjects in a generation is randomly formed with an equal

133


endowment for each (= 1000 points) after receiving WRG instructions. Second, subjects are asked to write their thinking on the "reasons and advice paper" about how each member of the 135 society should behave if she is a winner by chance, considering a desirable society from a neutral 136 perspective. Third, each subject read "reasons and advice papers" (if they have any) written by 137 the group members who had previously played the game in another group. Fourth, each subject 138 determines their two endowment take decisions: ETs1 and ETs2, and write the reasons and advice 139 for her decision to unknown others who will subsequently engage in the game as the different 140 group. After that each subject takes the endowment from each loser following her decisions if she 141 is a winner from the lottery. Otherwise, her endowment shall be taken by each winner. Fifth, in the 142 "reasons and advice paper," each subject mention the game results, i.e., winner or loser, and final 143 gains, while also providing additional advice to other group members. 144

In the IRA, after receiving WRG instructions, three subjects with an equal endowment (= 1000145 points) for each are randomly assigned to form a group, referred to as a generation in a sequence. 146 Each subject write their thinking about winner's behaviors to losers in a society as same as IAA. 147 However, she read "reasons and advice papers" (if they have any) written by the group members 148 who have already played the game in the previous generations. After that each subject sets her 149 ETs1 and ETs2, and asked to be accountable for that, providing the reasons and advice to unknown others that will play WRG later as the future generations with a generational lineup. Finally, each subject go through the lottery, take the endowment from losers (or her endowment shall be taken), and in the "reasons and advice paper," mentions the game results and adds additional advice to 153 other group members in the future generation. 154

In experiments, a subject enrolls and engages in a single session. Subjects in a session are assigned to one treatment, therefore categorizing our experiments as a between-subject design.

Upon arrival at the laboratory, they are sent to computers interconnected inside a network for the exchange of information regarding their decisions, advice and payoffs with the administrative PC through z-tree software (Fischbacher, 2007). Subjects are provided with written instructions and consent form detailing the experimental procedures involved in the treatment, and they are

Figure 2: A flow chart of experimental procedures for subjects in the intragenerational accountability (IAA) and intergenerational accountability (IRA) treatments as compared to control winner's righteousness game (WRG) in one sessions

requested to sign the forms upon agreeing to participate (see the appendix A for experimental instructions). After we observe each subject's agreement, the experimenter delivers oral instructions 162 to all subjects in that session using neutral terminologies, ensuring comprehension of each proce-163 dure without any bias. First, the subjects engage in an SVO game for approximately 20 minutes, 164 choosing selections that indicate their SVOs. Second, the WRG is conducted, requiring a duration 165 of 30 to 45 minutes, contingent upon the treatments. Third, following the WRG, subjects fill out 166 the sociodemographic questions in 10 minutes. The session concludes with the disbursement of an 167 experimental reward to each subject in the session, lasting approximately 5 to 10 minutes. Each 168 subject receives a fixed participation fee of 500 JPY. Depending on the performance, subjects earn 169 300 JPY from the SVO game and 1200 JPY from WRG on average. A flow chart summarizing the 170 experimental procedures for a session is presented in figure 2. 171

172 2.2 Statistical analyses

The experimental cross sectional data from 297 subjects are systematically organized and em-173 ployed for statistical analyses, comprising ETs1, ETs2, two treatment dummies: (i) IAA and (ii) 174 IRA, gender dummy, SVO dummy, average points taken by previous group members in the case 175 of one (AP1) and two winners (AP2) and three reasons and advice dummies: (i) one set (RA1), 176 (ii) two sets (RA2) and (iii) three or more sets (RA3) of reason and advice papers (see table 1 for 177 the definitions of all variables). The median regression is used to statistically analyze the treatment 178 effects on ETs1 and ETs2 instead of parametric mean-based regressions, when observations of 179 ETs1 and ETs2 in the sample are deemed non-normally distributed and/or skewed. The literature asserts that median regressions are superior to parametric mean-based methods, such as ordinary least squares (OLS) regression, as they provide robust estimations against boundary values and/or outliers, particularly when the dependent variable is constrained within a specific support range, 183 non-normally distributed and skewed (Hao and Naiman, 2007, Hirose and Kotani, 2022). We have 184 conducted Shapiro-Wilk tests on ETs1 and ETs2 to assess their normality with a null hypothesis 185 positing that the variables are normally distributed. The findings reject the null hypothesis for

Table 1: Descriptions of variables

Variables	Descriptions
Dependent variables Endowment takes in the case of one winner (ETs1)	A variable that represents the endowment take decision by each subject from losers as she is the sole winner in a group.
Endowment takes in the case of two winners (E182)	A variable that represents the endowment take decision by each subject from a loser as she is the one winner out of two winners in a group.
Independent variables $ Treatments (Base group = Control WRG)^a $	
Intragenerational accountability (IAA) Intergenerational accountability (IRA)	A dummy variable that takes 1 when a subject is in IAA treatment, otherwise 0. A dummy variable that takes 1 when a subject is in IRA treatment, otherwise 0.
Gender (Base group = female)	A dummy variable that takes 1 when a subject is male, otherwise 0.
SVO (Base group = Prosocial) ^b	A dummy variable that takes 1 when a subject is identified as proself, otherwise 0.
API	Average points taken by previous group members in the case of one winner that is
	mentioned in the reason and advice papers
AP2	Average points taken by previous group members in the case of two winners that is mentioned in the reason and advice papers
Reasons and advice	
(Base group $=$ No reasons and advice paper)	
One set of reasons and advice papers (RA1)	A dummy variable that takes 1 when a subject has one set of the reasons and advice
	papers from previous groups, otherwise 0.
Two sets of reasons and advice papers (RA2)	A dummy variable that takes 1 when a subject has two sets of the reasons and advice paners from previous groups, otherwise 0.
Three or more reasons and advice (RA3)	A dummy variable that takes 1 when a subject has three or more sets of the reasons
	and advice papers, otherwise 0.

^a Winner's righteousness game (WRG) ^b Social value orientation (SVO)

ETs1 (z = 2.87, p < 0.01) and ETs2 (z = 4.32, p < 0.01). Consequently, we employ the median regressions for ETs1 and ETs2 with the specifications of equation (1).

$$\mathbf{Y}_{i}^{K} = \mathbf{X}_{i}\boldsymbol{\beta}^{K} + \epsilon_{i} \tag{1}$$

where $\mathbf{Y}_{i}^{K}\mathbf{s}$ are dependent variables that indicate endowment take decisions of subjects indexed by 190 $i=1,\ldots,297$ for $K=\{\mathrm{ETs1},\mathrm{ETs2}\}$. $\mathbf{X}_i=(1,X_{1i},X_{2i},\ldots,X_{\ell i})$ represents a vectors of $\ell+1$ 191 independent variables consisting of intercept, IAA, IRA, gender, prosocial, AP1, AP2, RA1, RA2 192 and RA3, respectively. Finally $\boldsymbol{\beta}^K = (\beta_0^K, \beta_1^K, \dots, \beta_\ell^K)$ is a vector of the coefficients associated 193 with \mathbf{X}_i to be estimated through the least absolute distance estimation method and ϵ_i is an error 194 term. Each coefficient represents the alteration in the median resulting from a one-unit increase 195 in a continuous (or dummy) independent variable (or from zero to one), holding other variables 196 constant. 197

3 Experimental results

Table 2 and table 3 report the summary statistics of the major variables for subjects in the 199 control winner righteousness game (WRG), intragenerational accountability (IAA) and intergen-200 erational accountability (IRA) and overall sample. In table 2, the averages of the independent 201 variables, i.e., gender and social value orientation (SVO), conditional on specific treatments are 202 almost similar to the overall (unconditional) averages of taking the same variables. Considering 203 gender and SVO, 67 %, 67 %, and 56 % subjects are male, and 57 %, 43 %, and 56 % subjects are 204 proself in the control WRG, IAA and IRA, respectively. These results imply that the random as-205 signments of the treatments through sampling processes are effective enough as initially intended. 206 However, subjects across the different treatments had different information on the average points 207 of one (AP1) and two winners (AP2) that is taken by previous group members, including different 208 number of reasons and advice papers. Table 3 presents the summary statistics for two dependent variables, such as endowment takes in the case of one winner (ETs1) and two winners (ETs2).

Table 2: Summary statistics of the independent variables

		Treatments		Overall
	Control WRG ^a	IAAb	IRAc	O (CIAII)
Gender ^d				
Average (Median) ^e	0.67 (1.00)	0.67 (1.00)	0.56 (1.00)	0.63 (1.00)
SD^{f}	0.47	0.47	0.49	0.48
Min	0.00	0.00	0.00	0.00
Max	1.00	1.00	1.00	1.00
Social value orientation	on (SVO) ^g			
Average (Median)	0.57 (1.00)	0.43 (0.00)	0.56 (1.00)	0.52 (1.00)
SD	0.49	0.49	0.49	0.50
Min	0.00	0.00	0.00	0.00
Max	1.00	1.00	1.00	1.00
AP1 ^h				
Average (Median)	0.00 (0.00)	245.19 (0.00)	344.92 (300.00)	194.23 (0.00)
SD	0.00	328.14	278.81	285.89
Min	0.00	0.00	0.00	0.00
Max	0.00	1000.00	1000.00	1000.00
AP2 ⁱ				
Average (Median)	0.00 (0.00)	243.36 (0.00)	280.92 (216.00)	172.30 (0.00)
SD	0.00	334.48	255.82	270.89
Min	0.00	0.00	0.00	0.00
Max	0.00	1000.00	1000.00	1000.00
One set of reasons and	l advice papers (RA	.1) ^j		
Average (Median)	0.00 (0.00)	0.25 (0.00)	0.24 (0.00)	0.16 (0.00)
SD	0.00	0.44	0.43	0.37
Min	0.00	0.00	0.00	0.00
Max	0.00	1.00	1.00	1.00
Two sets of reasons ar	nd advice papers (R.	A2) ^k		
Average (Median)	0.00 (0.00)	0.25 (0.00)	0.09 (0.00)	0.11 (0.00)
SD	0.00	0.44	0.29	0.31
Min	0.00	0.00	0.00	0.00
Max	0.00	1.00	1.00	1.00
Three or more sets of	reasons and advice	papers (RA3) ^l		
Average (Median)	0.00 (0.00)	0.00 (0.00)	0.42 (0.00)	0.14 (0.00)
SD	0.00	0.00	0.49	0.34
Min	0.00	0.00	0.00	0.00
Max	0.00	0.00	1.00	1.00
Sample size	102	96	99	297

^a WRG stands for winner righteousness game

^b IAA stands for intragenerational accountability

^c IRA stands for intergenerational accountability

^d Gender = 1, when a subject is male, otherwise 0.
^e Median in parentheses

f SD stands for standard deviation.

 $^{^{\}rm g}$ SVO = 1, when a subject is proself, otherwise 0.

^h AP1 stands for average points taken by previous group members in the case of one winner that is mentioned in the reasons and advice papers

¹ AP2 stands for average points taken by previous group members in the case of two winners that is mentioned in the reasons and advice papers

 $^{^{}j}$ RA1 = 1, when a subject has one set of reasons and advice paper, otherwise 0.

 $^{^{}k}$ RA2 = 1, when a subject has two sets of reasons and advice papers, otherwise 0. 1 RA3 = 1, when a subject has three sets of reasons and advice papers, otherwise 0.

Table 3: Summary statistics of the dependent variables

	Tre	eatments		Overall
	Control WRGa	IAAb	IRAc	o veruit
Endowment to	akes in the case of	one winner	(ETs1)	
Average	752.45	605.00	459.61	607.18
Median	1000.00	500.00	400.00	600.00
SD^d	309.93	332.93	329.77	344.84
Min	0.00	0.00	0.00	0.00
Max	1000.00	1000.00	1000.00	1000.00
Endowment to	akes in the case of	two winner	s (ETs2)	
Average	745.39	616.88	394.08	586.75
Median	1000.00	550.00	300.00	500.00
SD	322.07	348.35	322.29	360.71
Min	0.00	0.00	0.00	0.00
Max	1000.00	1000.00	1000.00	1000.00
Sample size	102	96	99	297

a WRG stands for winner righteousness game

211

216

217

218

219

220

221

222

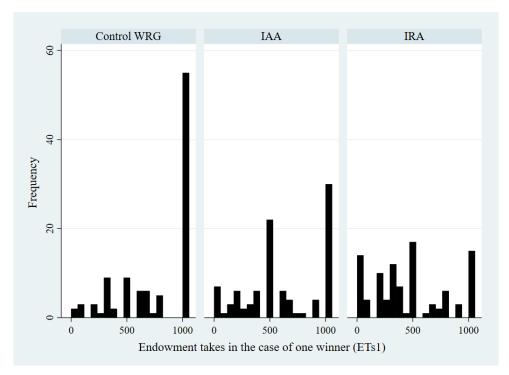
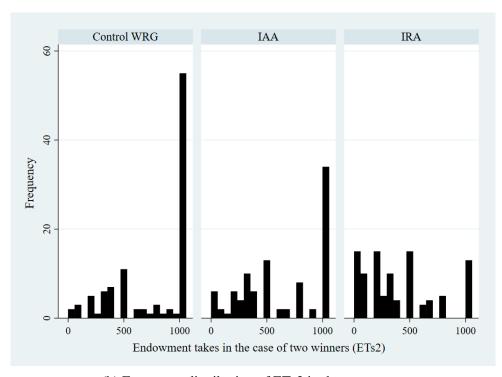
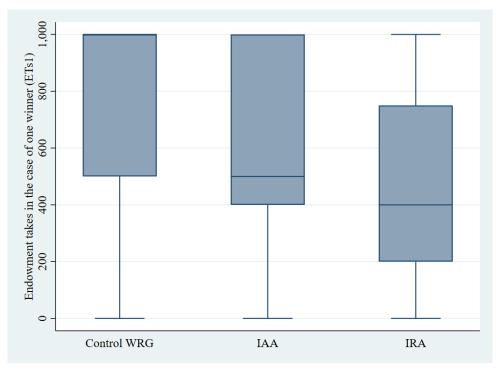

Subjects in the control WRG decide to take endowments 752.45 and 745.39 points from losers as she is a winner in the case of one winner and two winners in a group, respectively. However, sub-212 jects in IAA and IRA decide to take endowments 605.00 (616.88) and 459.61 (394.08) points from 213 losers as she is winner in the case of one winner (two winners) in a group, respectively. Overall, 214 table 3 reveals that subjects in different treatments exhibit different ETs1 and ETs2. 215

Figure 3 shows the frequency distributions of the ETs1 and ETs2 under the three treatments: control WRG, IAA and IRA. Figure 3a (figure 3b) demonstrates that the distribution under the control WRG is skewed to the right, as the peak of the distribution is 1000 points, indicating that a considerable portion of subjects take all endowments from losers as she is a winner in the case of one winner (two winners) in a group. On the other hand, the distribution under the IAA and IRA are close to flattened, with concentration of around 0 to 500 points. We also draw the corresponding boxplots in figure 4 for the same distributions under the control WRG, IAA and IRA, corroborating that the location parameters, such as medians and quantiles, for the ETs1 and ETs2 per subjects in the IAA and IRA treatments are generally lower than those in the control WRG. We also run a Mann-Whitney test with the null hypothesis that the distributions of the ETs1 and ETs2 per subject


^b IAA stands for intragenerational accountability

c IRA stands for intergenerational accountability

^d SD stands for standard deviation.



(a) Frequency distribution of the ETs1 in the treatments

(b) Frequency distribution of ETs2 in the treatments

Figure 3: Frequency distribution of ETs1 and ETs2 in the control WRG, intragenerational accountability (IAA) and intergenerational accountability (IRA) treatments

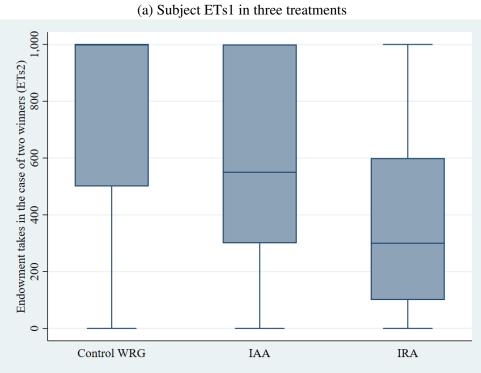


Figure 4: Boxplots of endowment takes (ETs1 and ETs2) by subjects from losers as they are winners in three treatments, i.e., control WRG (winner's righteousness game), intragenerational accountability (IAA) and intergenerational accountability (IRA).

(b) Subject ETs2 in three treatments

Table 4: Estimation results of median regression on endowment takes

Variablas	Endowment tak	Endowment takes in the case of one winner (ETs1)	ne winner (ETs1)	Endowment tak	es in the case of tr	Endowment takes in the case of two winners (ETs2)
·	Model-1	Model-2	Model-3	Model-4	Model-5	Model-6
Treatment dummies						
$(Base\ group = Control\ WRG)^a$						
Intragenerational accountability (IAA)	-500.00***	-150.00***	-150.00**	-400.00***	-100.00	-100.00
	(73.24)	(47.83)	(68.62)	(110.90)	(92.00)	(64.25)
Intergenerational accountability (IRA)	-600.00***	-300.00***	-300.00***	-700.00***	-400.00***	-391.18***
Control factors	(80.10)	(47.35)	(94.99)	(85.40)	(99.98)	(62.59)
Gender (Base group = Female)		200.00***	200.00***		300.00***	258.82***
		(40.57)	(23.96)		(50.45)	(48.63)
$SVO^{\dagger}(Base\ group = Prosocial)$		300.00***	300.00***		200.00**	250.00***
		(32.87)	(35.46)		(93.66)	(47.01)
API ^c			0.30***			
			(0.11)			
AP2 ^d			I			0.47***
						(0.13)
Reasons and advice (Base group = No reasons and advice paper)						1000
One set of reasons and advice papers (KA1)			-200.00***			-235.29***
Two cate of reasons and advise nonare (B A 2)			(76.81) -137.50			(75.36) 059_04**
two sets of teasons and advice papers (NAZ)			(94.22)			(63.56)
Three or more sets of reasons and advice papers (RA3)			-120.00			-97.06
•			(104.12)			(88.34)
Sample size	297	296	296	297	296	296

Standard errors are in parentheses
***significant at the 1 percent level, **at the 5 percent level and *at the 10 percent level

^a WRG stands for winner righteousness game

^b SVO stands for social value orientation

^c API stands for average points taken by previous group members in the case of one winner that is mentioned in the reason and advice papers

^d AP2 stands for average points taken by previous group members in the case of two winners that is mentioned in the reason and advice papers

between the control WRG and other treatments (IAA and IRA) are the same. The null hypothesis is rejected at the 1% significance level, implying the significant differences in the distributions between control WRG and other treatments.

To quantitatively characterize the research question, we perform median regressions in which 229 ETs1 and ETs2 are taken as dependent variables, and IAA and IRA are taken as an independent 230 one along with other control factors, as described in equation (1). Table 4 reports the estimated 231 coefficients, their corresponding standard errors and the statistical significance level of the inde-232 pendent variables on ETs1 and ETs2 in median regression models. Model-1 (Model-4) in table 4 233 contains two treatment dummies, such as IAA and IRA, as independent variables. Next, we grad-234 ually add gender dummy, SVO and other control factors as independent variables in models 2 to 235 3 (models 5 to 6), building upon model-1 (model-4). We mainly center on reporting the estimated 236 coefficients of treatment dummies and some control variables, such as gender, SVO, AP1, AP2 and 237 RA1, because they are identified to remain significant at 1 to 5% in all models. The results reveal 238 that male subjects tend to take more ETs1 and ETs2 by $200.00 \sim 300.00$ points as compared to 239 females. Regarding SVO, subjects who are identified as a proself take more ETs1 and ETs2 by 240 $200.00 \sim 300.00$ points as compared to prosocial. Subjects are found to increase ETs1 (ETs2) 241 by 0.30 (0.47) points as the average points taken by previous group members increased by one 242 point in the case of one winner (two winners) that is mentioned in the reasons and advice papers. 243 Subjects having one set of reasons and advice papers take $200.00 \sim 235.29$ points less ETs1 and ETs2 as compared to having no reasons and advice papers. Regarding treatment dummies, the estimated coefficients of IAA on ETs1 are statistically significant with a negative sign in models 246 1, 2 and 3. However, the estimated coefficients of IRA on both ETs1 and ETs2 are statistically 247 significant with negative sign across all models. The results indicate that subjects under IAA tend 248 to decrease endowment takes by $150.00 \sim 500.00$ points on the median ETs1 as compared to 249 control WRG, holding other variable constant. In IRA, subjects tend to decrease endowment takes 250 by $300.00 \sim 600.00$ and $391.81 \sim 700.00$ points on the median ETs1 and ETs2, respectively, as 251 compared to control WRG, holding other variables constant. Overall, the finding suggest that both 252

IAA and IRA affect subjects not to take endowments from losers as compared to the control WRG, and the take reduction in IRA is twice as much as that in IAA.

Overall, it is evident from the summary statistics that the random assignments of the treatments 255 are effective enough (table 2) and subjects endowment takes from losers as she is a winner in the 256 case of one and two winners in a group get different in three treatments (table 3). It also appears to 257 be true qualitatively in figure 4. We quantify the difference across the treatments through median 258 regressions. The estimated coefficients indicate that subjects in IRA (IAA) tend to decrease en-259 dowment takes by $300.00 \sim 600.00 \, (150.00 \sim 500.00)$ and $391.81 \sim 700.00$ points on the median 260 ETs1 and ETs2, respectively, as compared to the control WRG, holding other variables constant. 261 These findings are robust and consistent with the results obtained from different models in table 4. 262 The estimation results associated with ETs1 and ETs2 provide answers to our research questions 263 (how asking people to be accountable for decisions influence their behaviors toward losers as they 264 are winners by chance?) and support the alternative hypothesis (being accountable induces win-265 ners to behave righteously to losers) by rejecting the null. Finally, our research establishes that 266 when people are held accountable for their decisions across generations, they righteously behave 267 to enhance both intragenerational and intergenerational fairness. 268

As we progress into the twenty-first century, it becomes increasingly apparent that economic, environmental and technological transformations are transpiring globally, resulting in winners and losers (O'Brien and Leichenko, 2003, UN, 2020, Rodríguez-Pose et al., 2023). Although the potential exists for universal benefit, numerous regions, sectors or social groups are marginalized from the globalization process or experience predominantly adverse effects, such as heightened economic vulnerability and/or a diminution of political or cultural identity (Conroy and Glasmeier, 1992, Mittelman, 1996, 2000). Kapstein (2000) analyses in his review essay that globalization and trade liberalization have influenced the evolving patterns of income distribution in industrial economies. He asserts that whereas free trade produces overall economic efficiency benefits, it simultaneously reallocates the rewards to factors of production, such as labor, resulting in identifiable groupings of benefactors and disadvantaged persons, or, in other terms, winners and losers.

269

270

274

276

277

278

Furthermore, climate impact assessments consistently highlight disparities in the regional and sectoral effects of climate change, and there is an increasing acknowledgement that the execution 28 of climate change mitigation policies generates both winners and losers (McCarthy et al., 2001, 282 O'Brien and Leichenko, 2003, Parry et al., 2007). Frank and Cook (1995) argues that winner-283 take-all markets, influenced by globalization and technology, attract excessive resources and lead 284 to wasteful spending patterns, based on the standard economic premise that the social value of a 285 product or service is effectively measured by market willingness to pay. In this sense, our WRG 286 represents the current environment of winner-take-all societies where each subject in a group de-287 cides how much to take endowments from losers as she is a winner by chance (i.e, lottery) and 288 how inequality arises from the status quo of equality. The understanding of how winner-take-all 289 markets lead to income inequality may influence societal efforts to modify market distributions for 290 the sake of fairness (Frank and Cook, 1995). Research by social psychologists and anthropologists 29 indicates that social learning via observation and communication fosters empathy and reduces so-292 cial distance towards people from other groups (Behrens et al., 2008, Smith, 2010, Heyes, 2012). 293 In alignment with existing literature, the one-sided communication of reasons and advice from one 294 group to another for IAA, as well as from the current generation to subsequent generations for 295 IRA, serves as a social mechanism that reduces social disparity and conveys shared perceptions of righteousness (Timilsina et al., 2023). Therefore, it shall be possible to argue that subjects in 297 our experiments have righteously behaved to enhance both intragenerational and intergenerational 298 fairness, raising sympathy and solidarity beyond self-interests by IAA and IRA.

4 Conclusion

This paper has examined the effect of the accountability on winners behaviors to losers, investigating the question "how asking people to be accountable for decisions influence their behaviors toward losers as they are winners by chance?" and the hypothesis "being accountable induces winners to behave righteously to losers." To this end, we have implemented a laboratory exper-

iment with three treatments of "control winner's righteousness game (WRG)," "intragenerational accountability (IAA)" and "intergenerational accountability (IRA)," for collecting data on endow-306 ment takes in the case of one winners (ETs1) and two winners (ETs2) and control factors of 297 307 student-subjects in three Japanese universities. The results show that both IAA and IRA induce 308 subjects not to take endowments from losers as compared to the control, and the effect under IRA 309 is approximately twice as much as that under IAA in magnitude. Overall, when people are held 310 accountable for their decisions across generations, they righteously behave to enhance both intra-311 generational and intergenerational fairness. The novel aspects of this study are (i) to consider the 312 accountability for analyzing winner's righteousness to losers by conducting a laboratory experi-313 ment and (ii) to empirically identify real decisions and behaviors toward losers by winners in a 314 game settings instead of declared intentions. 315

We recognize certain limitations in our research and suggest possible directions for future work. First, our study does not investigate the inner functioning of how and why IAA and IRA influences subjects motivations, decisions and behaviors on righteousness to losers. Future studies should incorporate an alternative experimental design or additional tests utilizing the psychological method and qualitative interviews to elucidate how and why IAA and IRA subjects modify their behaviors. Second, the gender effect is a compelling phenomena; nevertheless, the underlying reasons remain ambiguous. Third, in order to extend the applicability of our research findings, future studies should employ both IAA and IRA in social experiments to address several economic and social inequality issues. While we understand that our research may have other limitations, we sincerely feel that it represents an advancement in promoting winners righteousness to losers, and further studies on this topic will assist consolidate these findings.

5 Appendix

316

317

318

319

320

325

326

328

We provide (A) the experimental instructions for the winner's righteousness game (WRG).

6 Acknowledgments

We would like to thank the anonymous referees, Ryohei Hayashi, Yuta Yasui, Moinul Islam, Kostiantyn Ovsiannikov, Mst. Asma Khatun, Husniddin Sharofiddinov, Md. Tawhidul Islam and Natasya Ghinna Humaira for their helpful comments, advice and support. The authors especially thank Kochi Prefectural University and Kochi University for their support. We are also grateful for the financial support from the Japanese Society of the Promotion of the Science as the Grant-in-Aid for Scientific Research B (19H01485), Research Institute for Future Design and Kochi University of Technology.

References

- Alvaredo, F., Garbinti, B., and Piketty, T. (2017). On the share of inheritance in aggregate wealth: Europe and the USA, 1900-2010. *Economica*, 84:239–260.
- Bardsley, N. (2008). Dictator game giving: Altruism or artefact? *Experimental economics*, 11:122–133.
- Behrens, T., Hunt, L., Woolrich, M., and Rushworth, M. (2008). Associative learning of social value. *Nature*, 456:245–249.
- Bolton, G., Kato, E., and Zwick, R. (1998). Dictator game giving:Rules of fairness versus acts of kindness. *International journal of game theory*, 27:269–299.
- Borghans, L., Duckworth, A., Heckman, J., and Ter Weel, B. (2008). The economics and psychology of personality traits. *Journal of human resources*, 43:972–1059.
- Brosig, J., Helbach, C., Ockenfels, A., and Weimann, J. (2011). Still different after all these years: Solidarity behavior in east and west Germany. *Journal of political economy*, 95:1373–1376.
- Burns, W. (2017). A descriptive literature review of harmful leadership styles: Definitions, commonalities, measurements, negative impacts and ways to improve these harmful leadership styles. *Creighton journal of interdisciplinary leadership*, 3:33–52.
- Butler, D., Burbank, V., and Chisholm, J. (2011). The frames behind the games: Player's perceptions of prisoners dilemma, chicken, dictator, and ultimatum games. *Journal of socio-economics*, 40:103–114.
- Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Princeton university press.
- Carlsson, F., Johansson, O., and Nam, P. (2014). Social preferences are stable over long periods of time. *Journal of political economy*, 117:104–114.
- Cartwright, E. and Thompson, A. (2023). Using dictator game experiments to learn about charitable giving. *Voluntas*, 34:185–191.
- Conroy, M. and Glasmeier, A. (1992). Unprecedented disparities, unparalled adjustment needs: Winners and losers on the NAFTA "fast track". *Journal of interamerican studies and world affairs*, 34:1–38.
- De Nardi, M. and Fella, G. (2017). Saving and wealth inequality. *Review of economic dynamics*, 26:280–300.
- Dreber, A., Ellingsen, T., Johannesson, M., and Rand, D. (2013). Do people care about social context? Framing effects in dictator games. *Experimental economics*, 16:349–371.
- Engel, C. (2011). Dictator games: A meta study. Experimental economics, 14:583–610.

- Fearon, J. (2004). Why do some civil wars last so much longer than others? *Journal of peace research*, 41:275–301.
- Fischbacher, U. (2007). z-Tree: Zurich toolbox for ready-made economic experiments. *Experimental economics*, 10:171–178.
- Flage, A. (2024). Taking games: A meta-analysis. *Journal of the economic science association*, 10:255–278.
- Forgas, J. and Tan, H. (2013). To give or to keep? affective influences on selfishness and fairness in computer-mediated interactions in the dictator game and the ultimatum game. *Computers in human behavior*, 29:64–74.
- Frank, R. (2016). Success and luck: Good fortune and myth of meritocracy. Princeton University Press, Oxford.
- Frank, R. and Cook, P. (1995). *The winner-take-all society: Why the few at the top get so much more than the rest of us.* Penguin Books, New York.
- Gan, T., Zhang, K., Du, J., and Liu, L. (2025). Is post-event accountability effective-analysis of the effect and mechanism of environmental auditing on corporate ESG impacts. *International review of economics and finance*, 113:104392.
- Goerres, A. and Eicheler, J. (2025). Do voters on the left show more solidarity behaviour? Novel behavioural evidence from interactive surveys in Austria, West and East Germany. *Electoral studies*, 97:102980.
- Grech, P., Nax, H., and Soos, A. (2022). Incentivization matters: A meta-perspective on dictator games. *Journal of the economic science association*, 8:34–44.
- Gupta, S., Davoodi, H., and Alonso-Terme, R. (2002). Does corruption affect income inequality and poverty? *Economics of governance*, 3:23–45.
- Hao, L. and Naiman, D. (2007). *Quantile regression*, volume 149. Sage publications.
- Heyes, C. (2012). What's social about social learning? *Journal of comparative psychology*, 126:193.
- Hirose, J. and Kotani, K. (2022). How does inquisitiveness matter for generativity and happiness? *PLoS ONE*, 17:e0264222.
- Hossain, A. and Ali, M. (2014). Relation between individual and society. *Open journal of social sciences*, 2:130–137.
- Ingersholl, R. (1895). Abraham lincoln a lecture. C. P. Farrell, New York.
- Jetten, J., Wang, Z., Steffens, N., Mols, F., Peters, K., and Verkuyten, M. (2017). A social identity analysis of responses to economic inequality. *Current opinion in psychology*, 18:1–5.

- Kapstein, E. (2000). Winners and losers in the global economy. *International organization*, 54:359–384.
- Konow, J. (1996). A positive theory of economic fairness. *Journal of economic behavior and organization*, 31:13–35.
- Konow, J. (2000). Fair shares: Accountability and cognitive dissonance in allocation decisions. *American economic review*, 90:1072–1092.
- Konow, J., Saijo, T., and Akai, K. (2020). Equity versus equality: Spectators, stakeholders and groups. *Journal of economic psychology*, 77:102171.
- Korenok, O., Millner, E., and Razzolini, L. (2014). Taking, giving and impure altruism in dictator games. *Experimental economics*, 17:488–500.
- Lancet, T. (2006). Corruption in health care costs lives. Lancet, 367:447.
- List, J. (2007). On the interpretation of giving in dictator games. *Journal of political economy*, 115:482–493.
- McCarthy, J., Canziani, O., Leary, N., Dokken, D., and White, K. (2001). Climate change 2001: Impacts, adaptation and vulnerability. Technical report, Contribution of working group II to the third assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
- Mittelman, J. (1996). Globalization: Critical reflections. Lynne Rienner Publishers.
- Mittelman, J. (2000). *The globalization syndrome: Transformation and resistance*. Princeton University Press.
- Mulgan, R. (2000). Accountability: An ever-expanding concept? *Public Administration*, 78:555–573.
- Murphy, R., Ackermann, K., and Handgraaf, M. (2011). Measuring social value orientation. *Judgment and decision making*, 6:771–781.
- Nowak, M., Page, M., and Sigmund, K. (2000). Fairness versus reason in the ultimatum game. *Science*, 289:1773–1775.
- O'Brien, K. and Leichenko, R. (2003). Winners and losers in the context of global change. *Annals of the association of American geographers*, 93:89–103.
- Oliveira, A., Eckel, C., and Croson, R. (2014). Solidarity among the poor. *Economics letters*, 123:144–148.
- Ouvrard, B., Reynaud, A., Cezera, S., Thomasn, A., James, D., and Shivamurthy, M. (2025). Water sharing and equity-efficiency trade-offs: Evidence from a lab-in-the-field experiment in India. *Resource and energy economics*, 83:101510.

- Parry, M., Canziani, O., Palutikof, J., Linden, P., and Hanson, C. (2007). Climate change 2007: Impacts, adaptation and vulnerability. Technical report, Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
- Powell, R. (2004). The inefficient use of power: Costly conflict with complete information. *American political science review*, 98:231–241.
- Rodríguez-Pose, A., Terrero-Dávila, J., and Lee, N. (2023). Left-behind versus unequal places: Interpersonal inequality, economic decline and the rise of populism in the USA and Europe. *Journal of economic geography*, 23:951–977.
- Salisbury, K., Ranpariya, V., and Feldman, S. (2022). Accountability in reminder-based adherence interventions: A review. *Patient education and counseling*, 105:2645–2652.
- Schotter, A., Weiss, A., and Zapater, I. (1996). Fairness and survival in ultimatum and dictatorship games. *Journal of economic behavior and organization*, 31:37–56.
- Schurter, K. and Wilson, B. (2009). Justice and fairness in the dictator game. *Southern economic journal*, 76:130–145.
- Scobie, M., Norris, E., and Willson, H. (2025). Intergenerational accountability in the times of just transitions. *Accounting, auditing and accountability journal*, 38:1405–1427.
- Selten, R. and Ockenfels, A. (1998). An experimental solidarity game. *Journal of economic behavior and organization*, 34:517–539.
- Servátka, M. (2010). Does generosity generate generosity? An experimental study of reputation effects in a dictator game. *Journal of socio-economics*, 39:11–17.
- Sidanius, J. and Pratto, F. (2012). Social dominance theory. In Lange, P., Kruglanski, A., and Higgins, E., editors, *Theories of social psychology*, chapter 47, pages 418–438. SAGE Publications.
- Simonson, I. and Nye, P. (1992). The effect of accountability on susceptibility to decision errors. *Organizational behavior and human decision processes*, 51:416–446.
- Smith, E. (2010). Communication and collective action: Language and the evolution of human cooperation. *Evolution and human behavior*, 31:231–245.
- Sutters, M., Feri, F., Glatzle, D., Kocher, M., Martinsson, P., and Nordblom, K. (2018). Social preferences in childhood and adolescence. A large-scale experiment to estimate primary and secondary motivations. *Journal of economic behavior and organization*, 146:16–30.
- Timilsima, R., Kotani, K., Nakagawa, Y., and Saijo, T. (2019). Accountability as a resolution for intergenerational sustainability dilemma. Working Paper SDES-2019-2, Research Institute for Future Design, Kochi University of Technology.
- Timilsina, R., Kotani, K., Nakagawa, Y., and Saijo, T. (2023). Does being intergenerationally accountable resolve intergenerational sustainability dilemma? *Land Economics*, 99:1–28.

- UN (2020). World social report 2020: Inequality in a rapidly changing world. Department of Economics and Social Affairs, United Nations.
- Van Lange, P., Bekkers, R., Schuyt, T., and Vugt, M. (2007). From games to giving: Social value orientation predicts donations to noble causes. *Basic and applied social psychology*, 29:375–384.
- Van Lange, P., De Bruin, E., Otten, W., and Joireman, J. (1997). Development of prosocial, individualistic and competitive orientations: Theory and preliminary evidence. *Journal of personality and social psychology*, 73:733.
- Vredenburgh, D. and Brender, Y. (1998). The hierarchical abuse of power in work organizations. *Journal of business ethics*, 17:1337–1347.
- Wagner, R. (2005). Self-governance, polycentrism, and federalism: Recurring themes in Vincent Ostrom's scholarly oeuvre. *Journal of economic behavior and organization*, 57:173–188.
- Williamson, T. (2008). The good society and the good soul: Plato's republic on leadership. *The leadership quarterly*, 19:397–408.