

KOCHI UNIVERSITY OF TECHNOLOGY

Social Design Engineering Series

SDES-2025-13

Future generations and intergenerational sustainability towards SDGs: A comprehensive review for behavioral and institutional decision making

Natasya Ghinna

School of Economics and Management, Kochi University of Technology

Environmental Sustainability Research Group, Faculty of Engineering, Universitas Diponegoro

Koji Kotani

School of Economics and Management, Kochi University of Technology

Urban Institute, Kyushu University

College of Business, Rikkyo University

December 25, 2025

School of Economics and Management
Research Institute for Future Design
Kochi University of Technology

KUT-SDE working papers are preliminary research documents published by the School of Economics and Management jointly with the Research Institute for Future Design at Kochi University of Technology. To facilitate prompt distribution, they have not been formally reviewed and edited. They are circulated in order to stimulate discussion and critical comment and may be revised. The views and interpretations expressed in these papers are those of the author(s). It is expected that most working papers will be published in some other form.

Future generations and intergenerational sustainability towards SDGs: A comprehensive review for behavioral and institutional decision making

Natasya Ghinna^{*,†} Koji Kotani^{*,‡,§,¶}

December 25, 2025

Abstract

For Sustainable Development Goals (SDGs), considerations to future generations and intergenerational sustainability are required and must be integrated into interventions and policies for human behaviors and decision making. Yet, such interventions and policies remain underdeveloped despite their potential contribution. We conduct bibliometric and content analyses of 119 peer-reviewed publications over 20 years with a focus on future generations and intergenerational sustainability. To this end, a conceptual framework is developed, combining cognitive, noncognitive and socioeconomic factors to be parts of interventions and policies for behaviors and decisions towards SDGs. With the framework, this review maps the evolution of the literature and spots a set of open questions as well as future directions of research. We find that the literature has expanded steadily and reveal two main insights. First, the related studies mainly examine interventions and policies on short-run behaviors and decisions, such as generative, cooperative and sustainable behaviors, overlooking inquisitive, creative and productive ones. Second, there are few studies that analyze long-run changes in behaviors and decisions, implying the necessity of further studies on how interventions and policies shall be able to influence people's deliberative cognitive processes for the long-lasting impact. Overall, we identify clear and practical pathways towards accelerating progress for SDGs through linking actionable interventions and policies to behavioral changes and decision making, such as family-level education and community initiatives.

Keywords: Future generations; Intergenerational sustainability; Behaviors; Decision making; Interventions; Cognitive factors

^{*}School of Economics and Management, Kochi University of Technology

[†]Environmental Sustainability Research Group, Faculty of Engineering, Universitas Diponegoro

[‡]Urban Institute, Kyusyu University

[§]College of Business, Rikkyo University

[¶]Corresponding author, E-mail: kojikotani757@gmail.com

Contents

1	Introduction	3
2	Materials and Methods	7
3	Result and Discussion	8
3.1	Bibliometrics and Thematic Analysis	8
3.1.1	Research Output, Impact and Global Network	8
3.1.2	Thematic and SDG Mapping	12
3.1.3	Synthesis and Link to Content Analysis	13
3.2	Content Analysis	14
3.2.1	Generative and Inquisitive Behaviors	16
3.2.2	Cooperative and Sustainable Behaviors	20
3.2.3	Creative and Productive Behaviors	24
3.2.4	Factors Influencing Behavioral Changes and Decision Making	27
3.2.5	Interventions and Policies	31
4	Conclusion	34

Nomenclature

ACPs Automatic Cognitive Processes

DCPs Deliberative Cognitive Processes

FAB Future Ahead and Back

FD Future Design

FG Future Generations

IA Intergenerational Accountability

IFG Imaginary Future Generations

IGG Intergenerational Goods Game

IS Intergenerational Sustainability

ISD Intergenerational Sustainability Dilemma

ISDG Intergenerational Sustainability Dilemma Game

MVDA Majority Voting with Deliberative Accountability

SDGs Sustainable Development Goals

1 Introduction

2 Climate change, biodiversity loss and resource scarcity are among the most serious global chal-
3 lenges. They threaten long-term human well-being and the stability of economic and ecological
4 systems (Hu et al., 2018, Diprose et al., 2019). Greenhouse gas emissions remain highly concen-
5 trated, with a few major emitters responsible for most environmental impacts (Syropoulos et al.,
6 2023). Rapid economic growth, excessive resource use and unsustainable policies have intensified
7 environmental degradation, health risks, inequality and food and water insecurity (Bithas, 2020,
8 Chang et al., 2021). Biodiversity loss further compounds these problems, undermining ecosystem
9 functions and intergenerational well-being (Teodoro et al., 2023, Wang et al., 2024). The sus-
10 tainable development goals (SDGs) provide a global framework for transforming production and
11 consumption toward sustainability (Oliveira, 2018, Spijkers, 2018, Pandit et al., 2021). However,
12 progress remains slow. Many institutions still prioritize short-term gains, externalizing costs to fu-
13 ture generations (FG) and violating intergenerational equity (Hauser et al., 2014, Fornwagner and
14 Hauser, 2022, Balmford et al., 2024). Addressing these challenges requires both immediate action
15 and long-term strategies that ensure well-being for current and FG.

16 Research on FG, intergenerational sustainability (IS) and the SDGs has expanded but remains
17 fragmented. Achieving the SDGs depends on generativity, defined as concern for and commitment
18 to the well-being of current and FG (Erikson, 1963, McAdams and Aubin, 1992, Timilsina et al.,
19 2019). High generativity promotes education, social support, mentoring and sustainable practices
20 through legacy building and prosocial engagement (Keyes and Ryff, 1998, Fischer et al., 2004,
21 Urien and Kilbourne, 2011), while low generativity leads to short-term, self-centered behavior that
22 undermines IS (Doerwald et al., 2021). Recent research demonstrates that generativity correlates
23 with happiness and social preferences in developing countries (Shahen et al., 2019), varies be-
24 tween rural and urban societies (Timilsina et al., 2019), is enhanced through inquisitiveness and
25 autonomy (Hirose and Kotani, 2022, Hirose et al., 2023), strengthens children's wellbeing through
26 intergenerational exchanges (Hirose, 2024) and is constructed by older adults through life course
27 narratives emphasizing legacy and continuity (Downey et al., 2016, Grüner and Konzett, 2024).

28 Although young generations are expected to lead SDGs progress, their roles and characteristics
29 remain underexplored (Yamane and Kaneko, 2021).

30 Intergenerational sustainability dilemmas (ISDs) occur because the present generation gains
31 the benefits of its actions, while FG who bear the consequences cannot respond, creating asym-
32 metry and temporal distance between them (Kamijo et al., 2017, Shahrier et al., 2017, Timilsina
33 et al., 2021). Experimental studies show that perspective-taking interventions, such as the future
34 ahead and back (FAB) mechanism and future design (FD), enhance sustainable decisions, extend
35 time horizons and evoke empathy for FG (Saijo, 2020, Kamijo et al., 2017, Timilsina et al., 2023,
36 Mostafizur et al., 2025). FD experiments demonstrate that adopting the role of FG shifts prefer-
37 ences toward sustainability and induces persistent behavioral changes (Kamijo et al., 2017, Saijo,
38 2020). Institutional arrangements including deliberative forums, intergenerational councils, long-
39 term binding commitments and accountability systems strengthen prosocial norms and long-term
40 altruism (Timilsina et al., 2021, 2023, Halali and Perez, 2025). However, the SDGs framework
41 lacks explicit reference to intergenerational equity despite its centrality to sustainable develop-
42 ment, revealing gaps between present and FG (Spijkers, 2018). Integrating concern for FG into the
43 SDGs framework is essential to ensure that today's progress builds sustainable well-being across
44 generations. Yet, no existing study integrates FG concern, IS principles and the SDGs into a co-
45 herent framework linking actionable interventions and policies to behavioral changes and decision
46 making.

47 Several studies have examined how interventions and policies can induce behavioral changes
48 and decision making toward sustainability through automatic cognitive processes (ACPs), delibera-
49 tive cognitive processes (DCPs) and policy or institutional approaches. Interventions targeting au-
50 tomatic cognitive processes, such as nudges, labels and visual prompts, influence behavior through
51 choice architecture without removing options. These approaches often show immediate but short-
52 lived effects (Thaler and Sunstein, 2008, Loewenstein and Chater, 2017, Abrahamse, 2020). DPCs
53 engage reasoning, anticipation and perspective-taking, leading to longer-term behavioral changes
54 (Bamberg and Möser, 2007, Evans and Stanovich, 2013, Timilsina et al., 2020). Experimental

55 evidence, including FD and FAB, shows that adopting the role of future generations promotes
56 sustainable preferences and prosocial behavior (Kamijo et al., 2017, Saijo, 2020, Timilsina et al.,
57 2023). Policy and institutional approaches work mainly through external rules, incentives and
58 governance systems that shape collective behaviors (North, 1990, Ostrom, 2009, Timilsina et al.,
59 2019). DCPs-based approaches differ from nudge approaches by aiming to internalize motivation
60 and reshape preferences through deliberation, and they differ from policy approaches by working
61 through internal reflection rather than external constraints. Overall, the literature indicates that
62 interventions in ACPs and DCPs can influence sustainability-related behaviors in the short term,
63 but their long-term effectiveness and connections to the SDGs remain unclear (Allcott and Rogers,
64 2014, Abrahamse, 2020, Amiri et al., 2024).

65 Existing reviews on sustainability, the SDGs and behavioral changes have advanced under-
66 standing in separate domains but remain fragmented across the FG-IS-SDGs landscape. Biblio-
67 metric analyses have mapped publication patterns, disciplinary distributions and citation networks
68 in sustainability and SDG research (Sweileh, 2020, Yamaguchi et al., 2023, Mishra et al., 2024),
69 while systematic and narrative reviews have examined SDGs progress, implementation barriers
70 and policy instruments (Bengtsson et al., 2018). Other studies discuss intergenerational equity
71 and the SDGs (Oliveira, 2018, Spijkers, 2018), social and intergenerational equity in well-being
72 (Summers and Smith, 2014), frameworks for obligations to future generations (Tonn, 2018), in-
73 tergenerational sustainability narratives (Moldavanova, 2016) and sustainability and social welfare
74 (Fleurbaey, 2015). Recent reviews analyze intergenerational activities and older adults' well-being
75 (Whear et al., 2023) and social sustainability in aging societies (Komp-Leukkunen and Sarasma,
76 2024). However, none systematically connect concern for FG, IS principle and SDG achievement
77 through behavioral pathways and decision mechanisms. Critically, no existing review combines
78 bibliometric mapping with qualitative content analysis to examine how interventions and policies
79 operate through cognitive (automatic and deliberative), noncognitive, and socioeconomic or insti-
80 tutional factors within the FG-IS-SDG nexus. Bibliometric methods provide a broad view of the
81 field's structure and evolution but offer limited depth on conceptual and interventions analyses,

82 whereas narrative reviews provide detailed interpretation but limited coverage. Integrating these
83 approaches enables a coherent framework for interventions and policies, clarifying what is known
84 and what remains insufficiently understood about how interventions and policies induce long-run
85 behavioral changes and link to the SDGs.

86 Five critical gaps limit current understanding and application. First, the literature remains frag-
87 mented across economics, psychology and sustainability science, with diverse frameworks that
88 hinder theoretical and practical integration (Fleurbaey, 2015, Moldavanova, 2016, Tonn, 2018).
89 Second, most interventions remain short-term and context-specific, providing limited evidence
90 of durable behavioral changes or applicability in real-world settings (Shahrier et al., 2017, Tim-
91 ilsina et al., 2020, Pandit et al., 2021). Third, few studies examine whether intervention effects
92 persist over time and the underlying mechanisms, such as deliberative cognition and value-based
93 processes, remain unclear (Nakagawa and Saijo, 2020a, Shahen et al., 2020, 2021). Fourth, institu-
94 tional and behavioral factors are often analyzed separately despite their complementarity, leaving
95 limited insight into their interaction in supporting sustainability outcomes (Koirala et al., 2021,
96 Bogacki and Letmathe, 2021, Rose, 2024b,a). Fifth, although some studies explicitly link inter-
97 generational justice with the achievement of SDGs (Spijkers, 2018, Oliveira, 2018, 2023), most
98 FG-IS studies address sustainability in general terms without mapping specific behavioral mecha-
99 nisms to individual SDG targets. Recent applications targeting specific SDGs like sustainable food
100 consumption remain exceptions rather than the norm (Mostafizur et al., 2025). This leave gaps in
101 understanding which behaviors most effectively advance particular goals. Consequently, a system-
102 atic bibliometric and content analysis is required to identify research trends, thematic clusters and
103 conceptual gaps that can advance intergenerational sustainability toward the SDGs.

104 This study addresses existing gaps through a combined bibliometric and content analysis of
105 research on future generations (FG) and intergenerational sustainability (IS) within the framework
106 of the Sustainable Development Goals (SDGs). The analysis examines publication trends, geo-
107 graphic distribution, author networks, journal outlets, SDG linkages and conceptual orientations,
108 focusing on behavioral (generative, inquisitive, cooperative, sustainable, creative, productive), cog-

109 nitive (automatic and deliberative) and institutional dimensions. Two research questions guide this
110 work: RQ1 identifies the main trends, themes and gaps in FG-IS studies related to the SDGs, while
111 RQ2 explores their practical applications and implications for advancing sustainability. Overall,
112 this study provides the first integrated synthesis of FG-IS-SDGs research and develops a concep-
113 tual framework that combines cognitive, noncognitive and socioeconomic factors to be parts of
114 interventions and policies for behaviors and decisions towards SDGs.

115 **2 Materials and Methods**

116 This comprehensive review integrates bibliometric analysis and qualitative content analysis to
117 systematically map and interpret the scholarly landscape on future generations (FG) and intergener-
118 ational sustainability (IS) towards sustainable development goals (SDGs). The combined approach
119 provides both a quantitative understanding of the field's intellectual and conceptual structure and
120 a qualitative synthesis that explores interventions and policies for behaviors and decisions towards
121 SDGs. The workflow follows PRISMA 2020 for transparent identification, screening, and inclu-
122 sion of studies (Page et al., 2021). Data collection was performed exclusively through the Scopus
123 database, chosen for its extensive coverage of peer-reviewed literature in environmental and social
124 sciences. The search query was defined as TITLE-ABS-KEY ((future AND generation) OR gen-
125 erativity AND intergenerational AND sustainable OR sustainability OR SDG). It was restricted
126 to English-language publications from 2014 to August 2025 and yielded 488 documents. After
127 automatic filtering by publication type (articles, reviews and conference papers) and source type
128 (journals and proceedings), the dataset was reduced to 261 documents. Further manual screening
129 was conducted to ensure thematic alignment with FG, IS and the SDG framework.

130 Studies were excluded if they addressed unrelated topics or lacked explicit connections to FG or
131 IS. Specifically, excluded papers focused primarily on: Environment and Natural Resources (49),
132 Governance, Policy and Economy (31), Social, Cultural and Ethical Aspects (28), Education and
133 Research (10), Infrastructure, Urban Development and Transport (8), Miscellaneous and Language

¹³⁴ Exclusions (8) and No Access (4). After this process, a final corpus of 119 relevant papers was
¹³⁵ retained for detailed bibliometric and content analysis. Bibliometric analysis was conducted using
¹³⁶ the R and Python to identify the structural and thematic patterns of the field. Co-word analysis,
¹³⁷ cluster mapping and thematic evolution diagrams were generated to visualize conceptual linkages
¹³⁸ among keywords, authors and country. Complementary visualizations, including a Sankey dia-
¹³⁹ gram and SDG–year heatmap, illustrated the dynamic evolution of topics and the cross-domain
¹⁴⁰ integration of behavioral, environmental and social perspectives in intergenerational research. A
¹⁴¹ qualitative content analysis was then applied to the full texts of the 119 selected papers to extract
¹⁴² key conceptual insights. Information from each study was systematically organized in a structured
¹⁴³ Excel sheet to facilitate interpretation, identify recurring themes and support the development of
¹⁴⁴ the conceptual framework. Each record captured four analytical aspects: behavioral focus, SDG
¹⁴⁵ linkage, methodological features and main findings.

¹⁴⁶ **3 Result and Discussion**

¹⁴⁷ **3.1 Bibliometrics and Thematic Analysis**

¹⁴⁸ **3.1.1 Research Output, Impact and Global Network**

¹⁴⁹ The bibliometric analysis of 119 documents published between 2014 and August 2025 demon-
¹⁵⁰ strates a steady upward trend in research on Future Generations and Intergenerational Sustainabil-
¹⁵¹ ity towards the SDGs, with an annual growth rate of (2.31 %) (figure 1). The number of pub-
¹⁵² lications increased from 7 in 2014 to a peak of 20 in 2024, reflecting a growing global interest
¹⁵³ in long-term sustainability and future-oriented studies. Geographically, the research landscape
¹⁵⁴ based on all author affiliations reveals strong participation from developed regions, particularly
¹⁵⁵ Japan (158 affiliations), followed by the United States (29), China (14), Germany (12), Italy (8)
¹⁵⁶ and Australia (9) (figure 2). This pattern indicates that research on intergenerational sustainability
¹⁵⁷ is primarily driven by developed countries, while contributions from developing regions such as

158 Africa and South America remain limited.

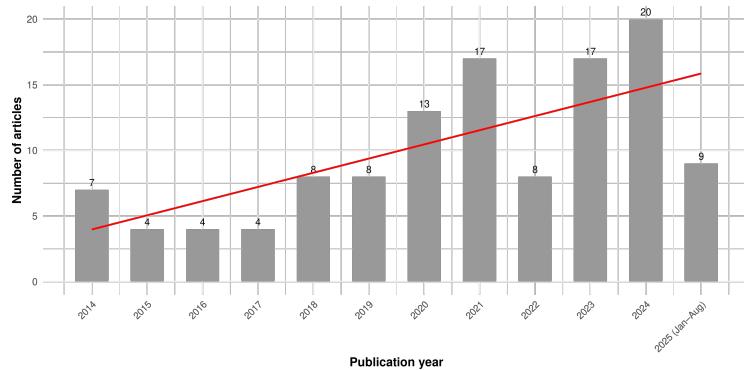


Figure 1: Yearly Publications

Figure 2: World Publications Map (All Affiliations)

159 The analysis of the most productive authors highlights Japan's leading contribution to this
160 field (Table 1). Saito T. leads with 23 publications, followed by Kotani K. (18), Nakagawa Y.
161 (10), Kamijo Y. (9) and Komatsu M. (7). In terms of publication sources, Sustainability (Switzer-
162 land) leads with 20 articles, while Futures (8), Sustainability Science (6), Ecological Economics
163 (5) and Environmental Economics and Policy Studies (4) also play important roles, reflecting the
164 field's growing connection between sustainability, economics and future studies. Citation per-
165 formance highlights the interdisciplinary and behavioral-economic reach of the field. The most

166 cited manuscripts include Hauser O. P. (2014, *Nature*, 264 citations), Delmas M. A. (2014, *Family*
 167 *Business Review*, 97 citations) and Kamijo Y. (2017, *Sustainability Science*, 80 citations). These
 168 studies collectively demonstrate how behavioral, psychological and economic mechanisms shape
 169 intergenerational decision-making. Hauser et al. (2014) showed that democratic voting can sustain
 170 cooperation with future generations by restraining free riders and reassuring conditional coopera-
 171 tors. Delmas and Gergaud (2014) found that family succession intentions strengthen sustainable
 172 business practices through transgenerational ties. Kamijo et al. (2017) revealed that involving rep-
 173 resentatives of imaginary future generations increases pro-sustainability decisions in experimental
 174 settings. Together, these works highlight the role of social preferences, institutional design and
 175 intergenerational identity in promoting long-term cooperation and sustainability. At the coun-
 176 try level, Japan rank first with 537 citations, followed by the United States (425) and the United
 177 Kingdom (110). This pattern suggests that citation influence is concentrated in countries with
 178 well-established research communities and institutional capacity in experimental and behavioral
 179 economics within sustainability studies.

Table 1: Top 10 Authors, Sources, Manuscripts per Citations and Citations per Country

Rank	Authors (articles)	Sources (articles)	Manuscripts (citations)	Country (citations)
1	Saijo, T (23)	Sustainability (Switzerland) (20)	Hauser, O.P., 2014, <i>Nature</i> (264)	Japan (537)
2	Kotani, K (18)	Futures (8)	Delmas, M.A., 2014, <i>Fam Bus Rev</i> (97)	USA (425)
3	Nakagawa, Y (10)	Sustainability Science (6)	Kamijo, Y., 2017, <i>Sustainability Sci</i> (80)	United Kingdom (110)
4	Timilsina, R.R. (7)	Ecological Economics (4)	Conway, S.F., 2016, <i>J Rural Stud</i> (67)	Norway (77)
5	Hauser, O.P. (4)	Environmental and Resource Economics (4)	Hara, K., 2019, <i>Sustainability Sci</i> (66)	Germany (72)
6	Baumgartner, T. (3)	Frontiers in Psychology (4)	Chiswell, H.M., 2018, <i>Sociol Ruralis</i> (63)	Ireland (67)
7	Hara, K. (3)	Politics and Governance (3)	Summers, J.K., 2014, <i>Ambio</i> (52)	Netherlands (57)
8	Knoch, D. (3)	Scientific Reports (3)	Spijkers, O., 2018, <i>Sustainability</i> (51)	Austria (48)
9	Hirose, J. (3)	Geoforum (2)	Shubert, S., 2017, <i>Sustainability Sci</i> (50)	Poland (43)
10	Hizen, Y. (3)	Gerontologist (2)	Oliveira, R.Y., 2018, <i>Sustainability</i> (48)	China (42)

180 The Sankey diagram of top 20 authors-keywords-countries analyzed using R Bibliometrix is
 181 shown in figure 3. The width of each flow reflects the strength of the connection between the
 182 elements, allowing readers to visualize how authors and national research networks are linked
 183 through common research themes identified by keyword analysis. Japanese researchers, includ-
 184 ing Saijo T., Kotani K. and Nakagawa Y., show strong associations with Future Design, Future
 185 Generations, Intergenerational Sustainability and Deliberation, indicating Japan's leading role in

Sankey Diagram: Top 20 Authors → Keywords → Country

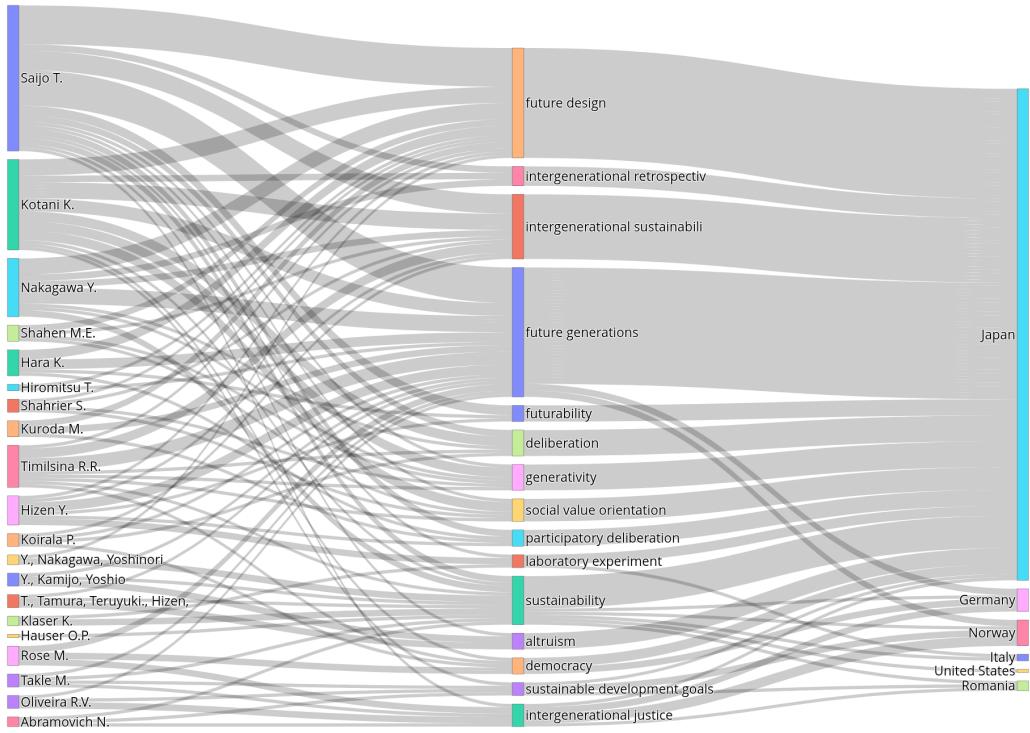


Figure 3: Sankey Diagram

186 advancing behavioral and experimental approaches to long-term decision-making. Future Design
 187 and Future Generations function as the main connecting concepts, bridging related ideas such as
 188 Generativity, Futurability and Participatory Deliberation. At the country level, Japan dominates the
 189 network with the widest thematic coverage. Germany connects mainly to Intergenerational Justice,
 190 Democracy and Future Generations, while Norway links with Intergenerational Justice, SDGs and
 191 Future Generations. Italy and the United States relate primarily to Sustainability and Romania
 192 connects to Intergenerational Justice, SDGs and Sustainability. Overall, the diagram shows that
 193 Japan leads the behavioral and cognitive approaches, while European and American scholars con-
 194 tribute complementary normative and governance perspectives, collectively broadening the scope
 195 of intergenerational sustainability studies.

196 **3.1.2 Thematic and SDG Mapping**

197 The thematic and SDG mapping shows how research on Future Generations and Intergenera-
198 tional Sustainability towards the SDGs is structured and where it is growing. The thematic map was
199 created in R using the Bibliometrix package and a co-word analysis approach. The map helps to
200 understand the current research landscape and to identify future directions for development (Bagdi
201 et al., 2023). It is measured based on centrality and density. Centrality shows how important a
202 theme is in connecting with other topics in the field, while density shows how well-developed a
203 theme is within its own cluster. Moreover, it is divided into four quadrants: motor, basic, niche,
204 and emerging or marginal categories (Sharafuddin and Madhavan, 2020).

205 The results show that motor themes such as Sustainability, Future Generation, Intergenera-
206 tional Conflicts and Family are highly developed and central to the field, indicating that these are
207 driving and influential topics (figure 4). Basic themes including Future Design, Climate Change
208 and Intergenerational Sustainability are central but less developed, representing foundational areas
209 that require further investigation. Niche themes such as Generativity, Generations, Family Firm,
210 Intergenerational Cooperation and Fiscal Sustainability are well-developed but relatively isolated
211 from the broader research network, suggesting specialized areas of technical or contextual interest.
212 Finally, emerging themes like Intergenerational Altruism and Generation Y show low centrality
213 and development, indicating new, underexplored, or possibly declining areas of research.

214 The SDG year heatmap was created in Python (figure 5), showing publications linked to the
215 17 Sustainable Development Goals. The strongest connections are with SDG 12 (Responsible
216 Consumption and Production), SDG 13 (Climate Action) and SDG 16 (Peace, Justice and Strong
217 Institutions). Less attention is given to SDG 1 (No Poverty) and SDG 10 (Reduced Inequalities),
218 showing that social and economic equity are still less explored. Together, the thematic and SDG
219 results show that current research focuses mainly on environmental and institutional issues, with
220 growing interest in behavioral and economic aspects that connect daily actions with long-term
221 sustainability.

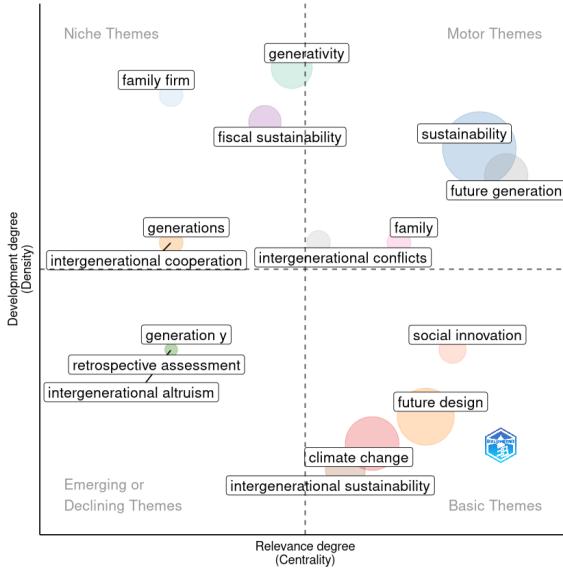


Figure 4: The thematic map focuses on future generations and intergenerational sustainability towards SDGs

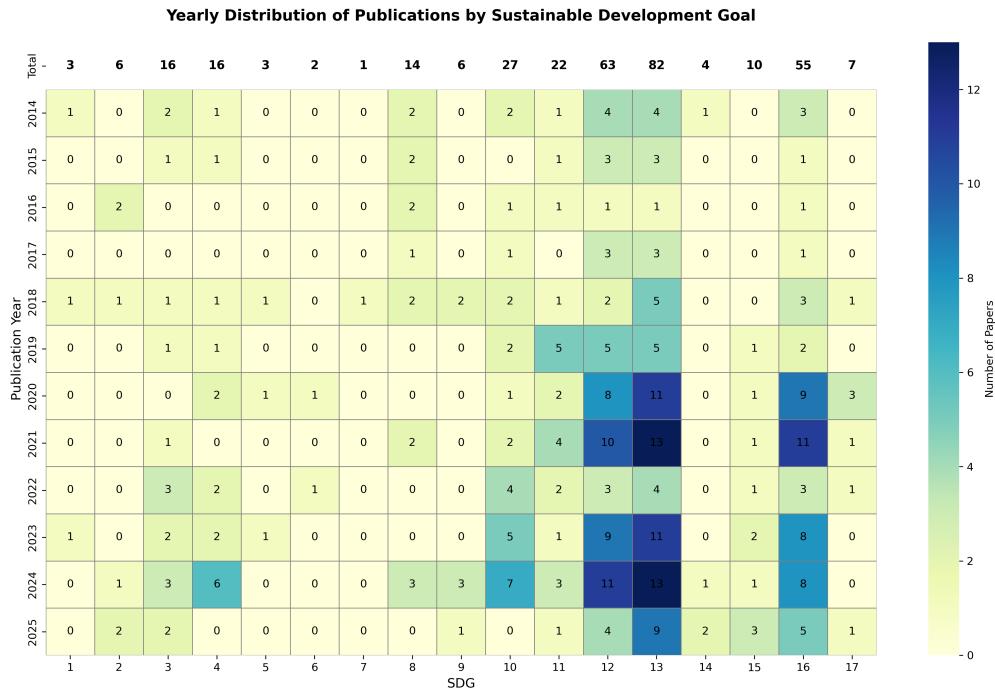


Figure 5: The heat map showing yearly publications towards SDGs

3.1.3 Synthesis and Link to Content Analysis

The bibliometric results show that research on Future Generations and Intergenerational Sustainability towards SDGs has grown steadily in recent years. Publications are led by a small yet

225 influential group of scholars and institutions concentrated in developed economies, particularly
226 Japan. The analysis highlights a strong thematic focus on Future Design, Sustainability and Inter-
227 generational Sustainability, reflecting the field's behavioral and institutional orientation supported
228 by experimental and deliberative approaches to long-term policy design. However, participation
229 from developing regions remains limited and research continues to focus largely on environmen-
230 tal and institutional aspects. Economic and social dimensions such as poverty reduction, equity
231 and welfare distribution are still underexplored. This imbalance suggests that the field is evolving
232 toward a comprehensive and globally inclusive understanding of intergenerational sustainability.

233 Expanding cross-regional and interdisciplinary collaboration can bring diverse perspectives
234 to this field. Involving researchers from developing countries can improve its policy and eco-
235 nomic relevance for achieving the SDGs. Such collaboration helps connect behavioral, social and
236 economic aspects of sustainability. It also makes research findings useful for inclusive and long-
237 term policy actions. Based on these bibliometric findings, the following content analysis (Section
238 3.2) explores how interventions and policies can shape behaviors and decisions toward the SDGs
239 through cognitive, noncognitive and socioeconomic factors.

240 **3.2 Content Analysis**

241 Figure 6 presents a proposed conceptual framework synthesizes the FG-IS-SDGs nexus by il-
242 lustrating how interventions and policies can shape behaviors and decisions drive long-term SDGs
243 achievement through cognitive, noncognitive and socioeconomic factors. The framework identi-
244 fies six behavioral orientations grouped into three sets: (1) generative and inquisitive behaviors,
245 (2) sustainable and cooperative behaviors and (3) creative and productive behaviors. These be-
246 haviors operate through cognitive factors (automatic and deliberative processes) and are shaped
247 by noncognitive factors and socioeconomic conditions, including culture, institutions and gov-
248 ernance. The framework also highlights interventions and policies mechanisms, such as Future
249 Design, prospective and retrospective perspective-taking, and AI agents, that can activate deliber-
250 ative cognitive processes for long-run behavioral changes. Article codes (A01–A92) and review

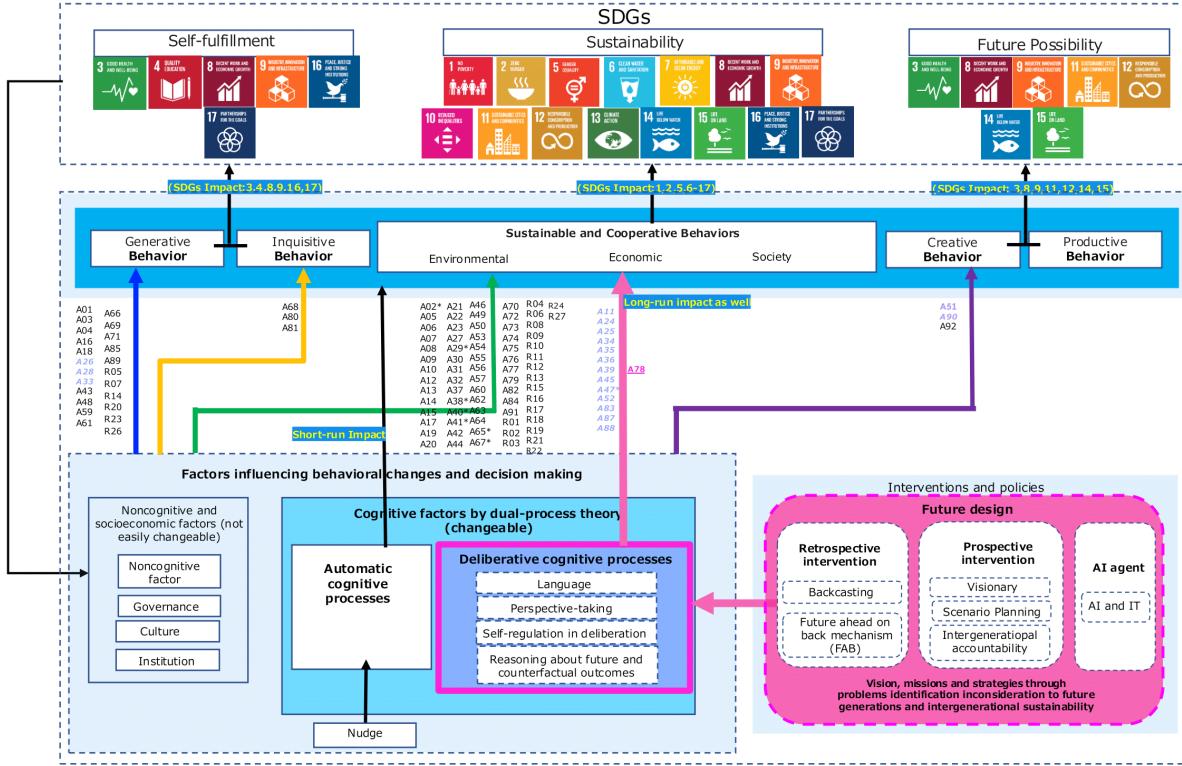


Figure 6: Proposed conceptual framework explaining how behavioral, cognitive and interventions pathways drive long-term SDGs achievement

251 codes (R01–R27) indicate empirical studies and review papers for each behavioral orientation, with
 252 one code representing one study on a specific behavior. The literature concentrates on sustainable
 253 and cooperative behaviors, followed by generative and inquisitive behaviors, whereas creative and
 254 productive behaviors remain underexamined.

255 Cognitive factors mediate behaviors through two temporal pathways following dual-process
 256 theory (Evans and Stanovich, 2013). Black arrows indicate short-run impacts from automatic cog-
 257 nitive processes (habits, heuristics, emotional reactions). Pink arrows indicate long-run impacts
 258 from deliberative cognitive processes (language, perspective-taking, self-regulation in delibera-
 259 tion, reasoning about future and outcomes). Pink-shaded boxes identify research employing de-
 260 liberative processes through interventions. Structural factors (governance, culture, institutions and
 261 noncognitive traits) constrain or enable these pathways. The three behavioral sets connect to dis-
 262 tinct SDG categories. Generative and inquisitive behaviors drive self-fulfillment SDGs (3, 4, 8,

263 9, 16, 17) through education, mentoring and institutional development (Hirose et al., 2023, Perez-
264 Encinas et al., 2021). Sustainable and cooperative behaviors address sustainability SDGs (1, 2,
265 5-17) through resource conservation and equitable development (Pandit et al., 2021, Mostafizur
266 et al., 2025). Creative and productive behaviors enable future possibility SDGs (3, 8, 9, 11, 12, 14,
267 15) through innovation and sustainable production (Jiang et al., 2023, Nakawake and Kobayashi,
268 2024). Interventions and policies (backcasting, FAB, scenario planning, intergenerational account-
269 ability) activate deliberative pathways toward integrated strategies (Timilsina et al., 2020, Hara
270 et al., 2023). The following subsections detail each component.

271 **3.2.1 Generative and Inquisitive Behaviors**

272 Generative and inquisitive behaviors represent complementary psychological orientations that
273 enable intergenerational sustainability. Generativity refers to concern for establishing and guiding
274 future generations through creating, maintaining and offering to others (Erikson, 1963, McAdams
275 and Aubin, 1992). It encompasses the desire and commitment to contribute to young generations'
276 well-being and leave a positive legacy beyond one's lifetime (McAdams and Aubin, 1992). Gen-
277 erative behavior operationalizes this construct through concrete acts to support and guide young
278 people and to benefit future generations (Millová and Blatný, 2018). Inquisitiveness represents
279 curiosity, eagerness to learn, active questioning and critical analysis (Baehr, 2015). Inquisitive be-
280 havior manifests as the act of an individual showing curiosity and openness towards new ideas,
281 perspectives and experiences (Hirose and Kotani, 2022). Unlike passive curiosity, it involves
282 relentless pursuit of understanding not merely "what" but "why" and "how" phenomena occur.
283 These behaviors complement each other through distinct yet synergistic mechanisms. Genera-
284 tivity provides motivational foundation through caring, the emotional concern and commitment
285 to future generations that drives action beyond self-interest (Keyes and Ryff, 1998). Inquisitive-
286 ness supplies the learning mechanism, the cognitive capacity and motivation to explore, question,
287 and understand complex sustainability challenges. Empirical evidence demonstrates that people
288 with high inquisitiveness tend to be more generative and inquisitiveness serves as both direct and

289 indirect determinant of well-being through mediation by generativity (Hirose and Kotani, 2022,
290 Hirose et al., 2023). Caring without learning may lack direction and effectiveness, while learning
291 without caring may fail to motivate action toward intergenerational goals. Integrating both orienta-
292 tions creates a complete behavioral profile for addressing sustainability dilemmas requiring moral
293 commitment to future generations and cognitive capacity to develop effective solutions.

294 Generative and inquisitive behaviors are closely related to SDG 3 (Health), SDG 4 (Quality
295 Education), SDG 8 (Decent Work and Economic Growth), SDG 16 (Peace, Justice and Strong In-
296 stitutions) and SDG 17 (Partnerships). Generativity correlates with psychological well-being and
297 life satisfaction, advancing individual health outcomes while motivating investment in future health
298 and social infrastructure (Ackerman et al., 2000, Grossbaum and Bates, 2002, Shahen et al., 2019,
299 Hirose and Kotani, 2022). Inquisitiveness enhances happiness both directly and indirectly through
300 generativity (Hirose et al., 2023). SDG 4 benefits most directly from these behaviors, as inquisi-
301 tiveness and generativity promote lifelong learning, critical thinking and value transmission across
302 generations(Hirose and Kotani, 2022, Hirose et al., 2023, Hirose, 2024). Strengthening these traits
303 through intergenerational learning can build resilient communities and support sustainable educa-
304 tion, particularly in rural and marginalized areas (Hirose, 2025). Generativity develops through
305 positive socialization in families, schools and communities reinforces SDG 4, 8, 16 and 17 by
306 cultivating curiosity, empathy, responsibility and cooperative engagement (Jones and McAdams,
307 2013). Together, inquisitiveness and generativity nurture well-being, civic responsibility and social
308 cohesion essential for intergenerational sustainability.

309 Generative and inquisitive behaviors manifest across multiple social contexts. Within fami-
310 lies, generativity appears through succession planning and value transmission, with family busi-
311 nesses showing higher eco-certification adoption when intergenerational succession intentions ex-
312 ist (Delmas and Gergaud, 2014). Cultural capital transmission enhances identity through parents'
313 participation in cultural practices (Li et al., 2024). Question-answer exchanges between genera-
314 tions significantly impact children's development, with positive adult responses encouraging in-
315 quisitiveness and enhancing happiness more than generativity during childhood (Hirose, 2024).

316 However, farm succession faces challenges as individualization trends diminish future farming
317 interest (Chiswell, 2018, Leiß and Zehrer, 2018). In education, inquisitiveness strongly predicts
318 generativity, with happiness positively associated with both traits and generativity mediating the
319 inquisitiveness-happiness relationship (Hirose and Kotani, 2022). These relationships hold even in
320 traditional matrilineal societies, with inquisitiveness influencing wellbeing both directly and indi-
321 rectly through generativity (Hirose et al., 2023). However, young people report disillusionment as
322 education systems prioritize employability over planetary needs (Biswas, 2023). Intergenerational
323 knowledge sharing reveals information asymmetry, with Gen Z facing challenges sharing mod-
324 ern sustainability knowledge with older generations (Tse, 2024). Visual narratives significantly
325 shift preferences toward future-beneficial choices by motivating perspective-taking (Nakagawa and
326 Saijo, 2021).

327 In communities, generativity expresses through volunteerism and civic action. Co-creation
328 methods in public space design enhance intergenerational relationships by fostering communica-
329 tion and reducing stereotypes (Wu et al., 2022). High-quality intergenerational contact involving
330 perspective-taking explains older participants' climate protection intentions, with legacy motiva-
331 tion positively related to climate protection (de Paula et al., 2024). In workplaces, orientations
332 surface in mentoring and sustainability programs. New entrants in mountain farming demonstrate
333 generative capacity by revitalizing abandoned farms despite lacking family farming backgrounds
334 (Grüner and Konzett, 2024). Businesses without intergenerational succession intention pursue
335 eco-certification symbolically rather than for true sustainability (Delmas and Gergaud, 2014).
336 Cross-cultural expressions vary substantially. Rural populations exhibit higher generativity due
337 to stronger social networks, whereas urbanization weakens generativity as interactions become su-
338 perficial (Timilsina et al., 2019). The inquisitiveness-generativity-wellbeing relationships remain
339 significant even in traditional societies with different cultural structures, suggesting robustness
340 across diverse sociocultural context (Hirose et al., 2023). Climate activism demonstrates bidirec-
341 tional compassion, with older activists engaging in policy lobbying while younger activists pri-
342 oritize awareness and education, though cultural factors influence approaches (Roy and Ayalon,

343 2024).

344 Research demonstrates robust effects for several practices. Inquisitiveness-generativity linkage
345 shows consistent patterns, with inquisitiveness significantly predicting generativity and serving as
346 both direct and indirect determinant of wellbeing (Hirose and Kotani, 2022, Hirose et al., 2023,
347 Hirose, 2024). FAB intervention successfully influences sustainable decisions by inducing cog-
348 nitive dissonance, changing both behaviors and motivational factors (Shahen et al., 2020, 2021).
349 Visual narratives effectively shift preferences by inducing regret prevention motivations (Naka-
350 gawa and Saijo, 2021). However, proxy voting alone proved insufficient without complementary
351 mechanisms (Miyake et al., 2023). Critical gaps persist. Long-term tracking remains severely
352 limited, with studies failing to track effects over months or years (Wu et al., 2022, Grüner and
353 Konzett, 2024). Longitudinal studies following children to observe how inquisitiveness and adult
354 responses influence development would address trajectories (Hirose et al., 2023, Hirose, 2024).
355 Cross-cultural applications remain underexplored, requiring testing across diverse contexts (Hi-
356 rose and Kotani, 2022, Hirose, 2024, Li et al., 2024, Tse, 2024). Causal mechanisms require
357 deeper investigation using experimental designs and neuropsychological approaches (Shahen et al.,
358 2021, Hirose and Kotani, 2022). Developing interventions fostering inquisitiveness and assessing
359 impacts on generativity represents actionable direction (Hirose and Kotani, 2022). Institutional
360 embedding remains insufficiently examined, requiring integration of autonomy and inquisitiveness
361 into national sustainability programs (Shahen et al., 2021, Hirose et al., 2023). Expanding mea-
362 sures to include behavioral assessments and exploring different adult-child interaction types would
363 strengthen research (Hirose, 2024).

364 Future research should employ experimental and longitudinal designs to assess whether in-
365 terventions and policies that activate deliberative cognitive processes generate long-run changes
366 in behaviors and decisions toward the SDGs. Field studies can test whether interventions that
367 target underexamined orientations, especially inquisitive, creative and productive behaviors, pro-
368 duce durable effects beyond the commonly studied generative, cooperative and sustainable behav-
369 iors, while randomized and natural experiments can identify effective modalities and real-world

370 impacts across contexts. Advances in measurement are essential. SDG-relevant behavioral and
371 decision scales that are validated across cultures, combined with mixed-methods designs and be-
372 havioral data, can improve comparability and reduce reliance on short-run self-reports. Scalable
373 interventions include community programs that enable intergenerational deliberation, household or
374 family-based reflection activities and workplace learning programs that connect problem-solving
375 with sustainability goals. Digital tools such as virtual reality for future perspective-taking, AI-
376 assisted reflection prompts and online deliberation platforms can expand reach, but they require
377 rigorous evaluation of engagement depth and persistence of effects. Integrating sustainability and
378 intergenerational perspectives in education and strengthening institutional arrangements that rep-
379 resent future generations in decision-making can support sustained impacts. Future studies should
380 also assess cultural adaptation, cost-effectiveness, unintended effects and equity in access. Com-
381 parative and systems-oriented research that links behavioral interventions with governance, infras-
382 tructure and incentives remains critical, because long-run progress toward the SDGs requires both
383 behavioral mechanisms and enabling socioeconomic and institutional conditions.

384 **3.2.2 Cooperative and Sustainable Behaviors**

385 Cooperative and sustainable behaviors are among the most extensively studied domains in in-
386 tergenerational sustainability research because they capture the central tension between immediate
387 individual benefit and long-term collective welfare. Cooperative behavior refers to individuals or
388 groups working together toward a common goal, ensuring that no group benefits at the expense of
389 others. Sustainable behavior involves protecting the environment and supporting social well-being
390 through responsible actions (Corral-Verdugo and Frías-Armenta, 2016). This tension becomes ev-
391 ident when individuals make extraction decisions alone, where resources are often depleted as a
392 small minority takes excessive amounts (Hauser et al., 2014). The intergenerational sustainability
393 dilemma (ISD) framework illustrates this challenge, as current generations must choose between
394 maximizing their own payoffs or preserving resources for future generations who cannot recipro-
395 ciate or sanction current decisions. The centrality of cooperation in this literature lies in its direct

396 relevance to human survival. Futurability, the capacity to envision and act for sustainable futures,
397 is essential since short-term self-interest leads to resource depletion and potential extinction (Saijo,
398 2024). Traditional altruism is insufficient; sustainability depends on belief systems that gain value
399 over time, where confidence in growing intergenerational assets encourages stronger conservation
400 (Kobayashi and Chiba, 2020). This broader framework integrates social justice, environmental jus-
401 tice and intergenerational equity as key conditions for long-term well-being (Summers and Smith,
402 2014).

403 Cooperative and sustainable behaviors directly influence SDG 12 (Responsible Consumption
404 and Production), SDG 13 (Climate Action) and SDG 16 (Peace, Justice and Strong Institutions).
405 However, a critical gap exists between sustainability feasibility and actual intergenerational wel-
406 fare simply ensuring sustainability is not enough if future generations lack the means to maintain
407 it. Political, economic and institutional constraints shape sustainability feasibility, with more con-
408 straints making it harder to ensure sustainability for future generations (Fleurbaey, 2015). Current
409 SDGs inadequately address the needs of distant future generations, primarily focusing on minimal
410 goods distribution among present populations. Proposed sub-targets based on intergenerational
411 sufficientarianism could enhance SDG effectiveness by ensuring that wellbeing thresholds are set
412 for both proximal and distant FG (Oliveira, 2018). Psychological factors further complicate SDG
413 engagement: mortality salience reduced perceived importance of socially related SDGs while leav-
414 ing ecologically related SDGs unaffected (Hu et al., 2018), suggesting different SDG dimensions
415 engage distinct psychological processes requiring tailored interventions. Operationalizing these
416 connections remains challenging. Bithas (2020) proposes using ecological thresholds as observ-
417 able and measurable indicators for sustainability policy that ensure environmental rights of future
418 generations. However, tensions exist between intergenerational and intragenerational equity, where
419 prioritizing FG can affect current socio-economic inequalities (Spijkers, 2018).

420 Cooperative and sustainable behaviors are strongest in communities with high social cohesion
421 and intergenerational trust. Rural participants consistently choose sustainable options more often
422 than urban participants, reflecting stronger prosocial norms and collective responsibility (Shahrier

423 et al., 2017). Urban environments shaped by competition and self-interest weaken cooperation
424 and reduce concern for future generations (Timilsina et al., 2021). Socio-spatial and cultural set-
425 tings further influence these patterns. In China, residents of plains and hilly regions show more
426 self-oriented preferences than those in mountainous areas, indicating that local environments shape
427 cooperation (Jingchao et al., 2021). In the United Kingdom and China, sustainability is understood
428 differently. People in Sheffield focus on social and economic well-being, while those in Nanjing
429 emphasize environmental responsibility through state narratives, yet both display limited concern
430 for distant futures (Diprose et al., 2019). Generational and occupational contexts also matter.
431 Young adults express strong concern for climate change but engage less in demanding sustainable
432 practices because of economic constraints (Stanes et al., 2015). Older groups show more consistent
433 long-term stewardship values (Zhang, 2018). In agriculture, generativity appears through mentor-
434 ing and community contribution rather than inheritance alone (Conway et al., 2016, Downey et al.,
435 2016). Overall, cooperative and sustainable behaviors thrive where shared identity, mutual trust
436 and intergenerational responsibility are embedded in community life and local institutions.

437 Public goods and intergenerational experiments reveal that cooperation across generations de-
438 pends on social context, deliberation and accountability mechanisms. The Imaginary Future Gen-
439 erations (IFG) treatment substantially increased sustainable choices, with 60 percent of participants
440 selecting sustainable options compared to 28 percent without it (Kamijo et al., 2017). IFG was most
441 effective when prosocial individuals were absent, suggesting that taking a future-generation per-
442 spective can induce sustainability even without altruistic motives. Voting and deliberation mecha-
443 nisms also strengthen cooperation. Median voting and Deliberative Majority Voting improve sus-
444 tainability by allowing participants to reflect on fairness and future consequences (Hauser et al.,
445 2014, Koirala et al., 2021, Balmford et al., 2024). When deliberation is combined with account-
446 ability, as in Majority Voting with Deliberative Accountability (MVDA), cooperation and fairness
447 increase further (Koirala et al., 2021). Future Design (FD) provides the most comprehensive ev-
448 idence. Participants debating from the perspective of future generations show increased empathy
449 and prioritize sustainable policies that preserve future freedom of choice (Hara et al., 2019, 2021).

450 Intergenerational Accountability (IA) strengthens moral commitment and fairness concerns, re-
451 ducing psychological distance between generations (Timilsina et al., 2023).

452 Beyond laboratory settings, several studies show evidence of behavioral persistence. Future
453 Design interventions increase organic consumption and reduce nonorganic purchases over repeated
454 rounds (Mostafizur et al., 2025). Perspective-taking promotes long-term support for sustainable
455 waste management and climate action (Pandit et al., 2021, Fornwagner and Hauser, 2022). Neu-
456 ropsychological studies link sustainable behavior to brain regions responsible for empathy and
457 self-control. It shows that cognitive and emotional capacities jointly shape long-term cooperation
458 (Guizar et al., 2022, Baumgartner et al., 2023). Retrospective treatment also enhances sustain-
459 able preferences by encouraging reflection on past decisions (Nakagawa et al., 2019b,a). Soft
460 institutional interventions, such as advisory mechanisms, promote sustainability even without en-
461 forcement, while fragmented or inconsistent narratives weaken behavioral continuity (Guida et al.,
462 2025). Overall, experimental and field evidence demonstrates that cooperative and sustainable be-
463 havior toward future generations can be sustained when deliberation, accountability and cognitive
464 engagement are combined with institutional and social reinforcement.

465 Most studies on cooperative and sustainable behaviors focus on short-term or individual-level
466 outcomes because experiments are often designed to isolate immediate responses under controlled
467 settings. While these approaches clarify how people cooperate or act sustainably in simplified
468 dilemmas, they capture only transient effects and overlook how behavioral change evolves through
469 repeated interaction, institutional support and social learning (Lohse and Waichman, 2020, Tim-
470 ilsina et al., 2022). The absence of longitudinal and institutional perspectives limits understanding
471 of how cooperation and sustainability become stable social norms. Future research should bridge
472 behavioral processes and institutional mechanisms to sustain cooperative and prosocial choices.
473 Rules, incentives and participatory governance structures can support long-term cooperation when
474 combined with trust, communication and shared accountability (Katsuki and Hizen, 2020, Inoue
475 et al., 2023). Field experiments that embed deliberation and intergenerational accountability within
476 communities, workplaces and local policies are needed to test persistence beyond the laboratory

477 (Kamijo et al., 2017, Koirala et al., 2021). Integrating behavioral economics with interventions
478 and policies through education, digital participation and intergenerational identity formation can
479 strengthen collective responsibility for the future . Long-term sustainability depends on aligning
480 internal motivations for cooperation with external structures that reinforce fairness, empathy and
481 trust as continuous social practices.

482 **3.2.3 Creative and Productive Behaviors**

483 Creative and productive behaviors expand the intergenerational sustainability framework by
484 explaining how societies generate and apply innovative solutions to complex challenges. While co-
485 operative and sustainable behaviors emphasize preserving existing resources, creative and produc-
486 tive behaviors focus on innovation, adaptability and knowledge transmission across generations.
487 Creative behavior refers to the generation of original and useful ideas or designs through problem-
488 solving and invention, free from internal or external constraints (Cabra and Uribe, 2013). Produc-
489 tive behavior involves taking effective actions that produce positive results and meaningful out-
490 comes. Together, these behaviors link creativity with implementation, enabling societies to develop
491 new capacities and institutions rather than depending solely on inherited assets, thereby strength-
492 ening intergenerational resilience. Future Design studies show that adopting future-generation
493 perspectives stimulates insight problem-solving and paradoxical thinking, allowing participants to
494 reframe “wicked” sustainability problems and generate transformative ideas (Nakagawa, 2020). In-
495 novation and exploration increase when incentives are linked to future benefits, demonstrating the
496 need for interventions and policies that align individual rewards with collective intergenerational
497 gains (Nakawake and Kobayashi, 2024). Creative engagement also fosters intrinsic motivation
498 through intellectual joy, reducing present bias and encouraging long-term reflection (Nakagawa,
499 2020). Integrating systems thinking with imaginary future generations (IFG) further enhances fu-
500 turability. Participants develop innovative and system-level proposals, shifting from incremental
501 solutions to structural approaches that support long-term goals such as decarbonization (Hara et al.,
502 2023). Together, these processes highlight creativity as a critical foundation for IS.

503 Creative and productive behaviors advance several Sustainable Development Goals (SDGs),
504 including SDG 6 (Clean Water and Sanitation), SDG 8 (Decent Work and Economic Growth),
505 SDG 9 (Industry, Innovation and Infrastructure), SDG 11 (Sustainable Cities and Communities),
506 SDG 12 (Responsible Consumption and Production), and SDG 13 (Climate Action). For SDG
507 13, the combination of Imaginary Future Generations and systems thinking enabled Kyoto City to
508 design long-term decarbonization strategies, illustrating how creative engagement can overcome
509 short-term political and economic barriers (Hara et al., 2023). In SDG 6 contexts, Future Design
510 workshops fostered original thinking in water management, revealing how structured creativity en-
511 hances collective mission and responsibility (Nakagawa, 2020). Productive behaviors supporting
512 SDG 9 link exploration and innovation to future benefits, showing that incentive systems align-
513 ing individual rewards with collective outcomes encourage sustainable technology development
514 (Nakawake and Kobayashi, 2024). Integrating creative ideation with productive execution enables
515 societies to identify synergies among SDGs, reduce trade-offs and strengthen institutional capacity
516 for lasting intergenerational sustainability.

517 Research linking creativity with intergenerational sustainability remains limited compared to
518 cooperative and sustainable behaviors. Existing studies focus mainly on local governance, inno-
519 vation systems and education. In local governance, Future Design workshops enabled municipi-
520 al officials to adopt 2050 perspectives as Imaginary Future Generations (IFG), applying systems
521 thinking to develop decarbonization strategies in Kyoto City (Hara et al., 2023). Similarly, nine
522 water management officers participated in seven workshops using cognitive mapping to visualize
523 thought processes (Nakagawa, 2020). These settings provide fertile ground for testing creative
524 approaches, complementing evidence that deliberation fosters intergenerational concern in ecosys-
525 tem service valuation (Mavrommati et al., 2020). In innovation contexts, laboratory experiments
526 on virtual tool design found that linking rewards to future-generation outcomes enhances explo-
527 ration and knowledge transfer (Nakawake and Kobayashi, 2024), aligning with policy efforts to
528 promote green innovation and accountability for intergenerational externalities (Jiang et al., 2023).

529 Creative and productive behaviors for sustainability vary across workplaces, households and

530 communities, reflecting distinct opportunities and constraints. In workplace contexts, causal loop
531 diagrams helped participants think more holistically and systematically in policy design. However,
532 expert-created rather than participant-created diagrams limited engagement (Hara et al., 2023).
533 Professional homogeneity supports shared technical understanding but may restrict generalizabil-
534 ity (Nakagawa, 2020). Deconstructing hierarchy promotes constraint relaxation, suggesting that
535 organizational status differences can inhibit creative thinking about transformative change (Naka-
536 gawa, 2020).

537 In household and community contexts, creativity connects to intergenerational value transmis-
538 sion. Generation Y households show widening value-action gaps driven by housing tenure and
539 labor market conditions, indicating structural limits to household innovation (Stanes et al., 2015).
540 Lifelong and reverse learning processes shape food consumption, showing households as adaptive
541 spaces where generations co-develop new practices (Carrigan et al., 2023). Cultural and eco-
542 nomic variations also shape creativity. Sheffield emphasizes social and economic aspects, while
543 Nanjing stresses environmental responsibility through state-led narratives (Diprose et al., 2019).
544 Economic precarity reduces exploration, as unrepaid conditions lower intrinsic motivation for in-
545 novation benefiting future generations (Nakawake and Kobayashi, 2024). Effective environments
546 combine temporal distance, accessible tools, psychological safety, iterative engagement and tan-
547 gible incentives (Nakagawa, 2020). Yet most evidence remains Japan-centered, requiring broader
548 cross-cultural validation.

549 Creative and productive behaviors remain underrepresented due to weaker links to established
550 behavioral economics traditions, greater measurement difficulty, long evaluation horizons and
551 sustainability discourses emphasizing sacrifice over creativity. Methodological challenges per-
552 sist. Kyoto's study lacked quantitative validation (Hara et al., 2023), water management relied on
553 post-hoc cognitive mapping (Nakagawa, 2020) and technology experiments used simplified two-
554 generation settings (Nakawake and Kobayashi, 2024). Future work should combine participatory
555 deliberation with quantitative assessment, expand across contexts and involve cross-disciplinary
556 participants. Scaling and replication require larger workshops where participants create their own

557 causal loop diagrams and test cognitive mapping for real-time feedback (Nakagawa, 2020, Hara
558 et al., 2023). Extending to multi-generation settings may clarify institutional interactions (Rose,
559 2024b). Domain expansion into circular economy, food systems and energy can test transferability
560 (Nakagawa, 2020, Hara et al., 2023). Studying incentive structures, including prestige or com-
561 munity reward systems, can identify scalable institutional designs (Bogacki and Letmathe, 2021,
562 Nakawake and Kobayashi, 2024). Future research should also explore cognitive mechanisms such
563 as intellectual joy and paradoxical thinking (Nakagawa, 2020) and interactions between creative,
564 cooperative and sustainable behaviors. Cross-cultural, longitudinal validation remains essential for
565 real-world applicability.

566 **3.2.4 Factors Influencing Behavioral Changes and Decision Making**

567 Behavioral change toward IS depends on both non-cognitive factors and cognitive factors,
568 rooted in dual-process theory that distinguishes between automatic and deliberative thinking sys-
569 tems. Non-cognitive factors encompass institutions, governance structures, cultural values, person-
570 ality traits and demographic characteristics that shape the context within which individual cognitive
571 processes operate (Evans and Stanovich, 2013, Chater and Loewenstein, 2023). These dimensions
572 determine how individuals form intentions and act within structural and social systems, providing
573 the foundation for interventions addressing FG and SDGs challenges. Institutional factors signifi-
574 cantly shape behavioral change through formal rules, enforcement mechanisms and organizational
575 structures. Research demonstrates that country-level governance factors such as government ef-
576 fectiveness, regulatory quality and rule of law drive firms' commitment to sustainability practices
577 through institutional pressures (Naciti et al., 2022, Galleli and Amaral, 2025). The World Bank
578 identifies six dimensions of governance indicators affecting sustainability: voice and accountabil-
579 ity, political stability and absence of violence/terrorism, government effectiveness, regulatory qual-
580 ity, rule of law and control of corruption (Kaufmann and Kraay, 2024). Among these, rule of law
581 consistently drives corporate sustainability performance. Studies show that legal infrastructure
582 and property rights improve environmental outcomes, with efficient governance ensuring coun-

583 tries progress by establishing effective resource management(Panayotou, 1997, Atta and Sharifi,
584 2024).

585 Cultural values represent another critical non-cognitive influence on sustainability behavior.
586 Research using dimensions demonstrates that national culture profoundly affects corporate sus-
587 tainability practices and individual pro-environmental behaviors. Culture affects both cognition
588 and norms by influencing how people perceive environmental issues and what behaviors are so-
589 cially valued (Miska et al., 2018, Ordóñez-Ponce, 2023). Demographic and socioeconomic factors
590 further influence cooperation and sustainability. Rural communities display higher prosociality
591 than urban groups due to stronger social capital and lower market dependence. Economic de-
592 velopment affects willingness and capacity to engage in sustainable behaviors, raising concerns
593 over equity and distributional impacts. Personality traits and individual differences constitute an-
594 other layer of non-cognitive influences. Research demonstrates substantial individual variation in
595 prosocial orientations, risk preferences, time preferences and environmental values that predict
596 sustainability behaviors independent of external contextual factors (Hauser et al., 2014, Shahrier
597 et al., 2017). Effective interventions should therefore target diverse motivational profiles rather
598 than assuming uniform responses. Cross-country comparisons show that governance and culture
599 jointly explain differences in sustainability practices. Nations with stronger governance and par-
600 ticipatory cultures, such as the UK and Malaysia, report higher CSR engagement than countries
601 with weaker institutions (Adnan et al., 2018). Broader analyses show that cultural dimensions shape
602 environmental outcomes in complex ways. Masculinity and power distance often correlate with
603 poorer environmental performance, while individualism supports institutional capacity and innova-
604 tion(Park et al., 2007, Dangelico et al., 2020, Huang et al., 2022). Long-term orientation promotes
605 better environmental and human development results, though effects of uncertainty avoidance and
606 indulgence remain debated (Ioannou and Serafeim, 2012, Sedita et al., 2022).

607 Dual-process theory explains how automatic and deliberative cognition jointly shape sustain-
608 ability behavior (Evans, 2008, Evans and Stanovich, 2013, Kahneman, 2011). Automatic processes
609 (type 1) are fast, intuitive and emotion-driven, whereas deliberative processes (type 2) are reflec-

610 tive, controlled and effortful. Evans (2008) identifies four defining features of deliberative cog-
611 nition, such as language, reflective consciousness, higher-order control and the capacity to think
612 hypothetically about future and counterfactual possibilities which enable reasoning about long-
613 term goals and intergenerational outcomes. Neuroscientific studies confirm this distinction: the
614 default mode network supports intuitive thinking, while executive control regions enable delibera-
615 tion and self-regulation (Gronchi and Giovannelli, 2018, Vatansever et al., 2017). In sustainability
616 contexts, these features correspond to language, perspective-taking, self-regulation and reason-
617 ing about future and counterfactual outcomes. Language facilitates intergenerational dialogue;
618 perspective-taking (as in FAB) strengthens empathy and moral concern; self-regulation aligns im-
619 mediate impulses with long-term goals; and reasoning supports the evaluation of uncertainty and
620 trade-offs (Shahrier et al., 2017, Shahen et al., 2021, Baumgartner et al., 2023). FD activates these
621 deliberative capacities through structured temporal reflection. FD participants adopt past, present,
622 and future perspectives to build coherent long-term narratives, reducing time inconsistency and
623 fostering sustained behavioral change (Mostafizur et al., 2025).

624 Automatic interventions, such as nudges, can encourage short-term behavioral change but of-
625 ten lose effectiveness over time because of habituation or reduced intrinsic motivation (Deci and
626 Ryan, 2000, Sunstein, 2015, Loewenstein and Chater, 2017). Deliberative approaches, including
627 reflective dialogue, transparency-based nudges and participatory decision-making, foster intrinsic
628 motivation and stable value orientations (van Gestel et al., 2021, Bamberg and Möser, 2007). The
629 most effective strategies combine both systems: automatic cues initiate action, while deliberation
630 consolidates it through reflection and moral reasoning. Examples include default green-energy
631 enrollment paired with education sustaining participation and intergenerational deliberation rein-
632 forcing prosocial norms and cooperation (Marteau et al., 2012, Timilsina et al., 2021). Overall,
633 behavioral change emerges when automatic reactions are guided and stabilized by deliberative
634 processes that engage language, perspective-taking, self-regulation in deliberation and reasoning
635 about future and outcome, core cognitive foundations for IS.

636 Cognitive and non-cognitive factors interact across institutional, cultural and social contexts

637 to shape sustainability behavior. Cognitive processes operate within these environments, which
638 can either enable or constrain how individuals deliberate and act toward intergenerational goals.
639 In education, sustainability outcomes depend on the alignment between institutional design and
640 cognitive engagement. Programs integrating critical reflection with supportive learning environ-
641 ments enhance competencies for long-term thinking (Hüfner, 2000). Cultural norms influence
642 pedagogy: high power distance favors teacher-centered learning, while participatory models flour-
643 ish in low-hierarchy, future-oriented cultures (Hofstede, 2001, House et al., 2004). In households,
644 value transmission occurs through communication and role modeling. Dialogue across genera-
645 tions can reshape habits, though time pressure and financial constraints limit deliberative reflection
646 (Mullainathan and Shafir, 2013, Essiz and Mandrik, 2022).

647 In workplaces, leadership, culture and institutional conditions jointly determine whether cog-
648 nition operates automatically or deliberatively. Transformational leadership engages both modes
649 by aligning shared values with conscious reasoning (Farrukh et al., 2022). Cultural and institu-
650 tional contexts moderate these effects: strong institutions and stable governance reduce cognitive
651 burden and promote habitual cooperation (Panayotou, 1997), whereas weak governance increases
652 uncertainty and requires reflective reasoning (North, 1990). Collectivist cultures foster prosocial-
653 ity through automatic socialization, while individualist contexts depend on deliberate cultivation of
654 shared responsibility (Triandis, 1995). Under resource scarcity, survival pressures trigger intuitive
655 reactions but also stimulate creative problem-solving (Evans and Stanovich, 2013, Mullainathan
656 and Shafir, 2013). As argued by Cerulo et al. (2021), cognition is embedded in social, institutional,
657 and material environments that shape how individuals think and act. Taken together, these findings
658 demonstrate that sustainability behavior emerges from the interaction between automatic social-
659 ization and deliberative reflection, structured by educational, organizational and cultural contexts
660 that condition how individuals learn, decide and act toward intergenerational well-being.

661 Future research needs to integrate cognitive and structural perspectives using multi-level and
662 cross-cultural models. Hierarchical and longitudinal approaches can clarify how institutions and
663 cultures shape cognition and how interventions lead to lasting behavioral change. Behavioral eco-

664 logical economics offers a systems perspective linking cognitive processes with institutional dy-
665 namics for sustainable transitions (Drews, 2025). Models should reflect cultural, socioeconomic,
666 and age-related diversity since these factors influence cognitive effects (Shahrier et al., 2017, Miska
667 et al., 2018). Limited cognitive resources reduce the effectiveness of deliberative interventions
668 among vulnerable populations (Mullainathan and Shafir, 2013). Participatory and context-sensitive
669 approaches that combine analytical rigor with inclusivity are needed to design frameworks that
670 promote IS (Ostrom, 2009).

671 **3.2.5 Interventions and Policies**

672 Future-oriented interventions and policies have been developed to influence people's concern
673 for future generations and intergenerational sustainability. Research applies structured decision
674 environments such as the Intergenerational Sustainability Dilemma (ISD), the Intergenerational
675 Sustainability Dilemma Game (ISDG) and the Intergenerational Goods Game (IGG) to examine
676 mechanisms including Future Design (FD), Imaginary Future Generations (IFG), Future Ahead
677 and Back (FAB) and Intergenerational Accountability (IA) (Hauser et al., 2014, Shahrier et al.,
678 2017). These studies demonstrate that behavioral interventions can complement structural and
679 policy changes by addressing psychological and motivational barriers that regulations alone cannot
680 solve ((Evans and Stanovich, 2013). FD, developed at Kochi University of Technology, is a com-
681 prehensive deliberative framework designed to enable people to think from the perspectives of past,
682 present and future generations (Nakagawa and Saijo, 2020b, Saijo, 2020, 2024). The framework
683 activates "futurability," or the ability to envision and act for sustainable futures. Within FD, three
684 main types of interventions such as retrospective, prospective and AI-assisted. It helps participants
685 develop visions, missions and strategies through structured problem identification. Key factors
686 influencing outcomes include location (rural populations show higher sustainability choices due to
687 stronger prosocial norms), age (intergenerational diversity enhances outcomes through "creative
688 friction"), cognitive traits (generativity, critical thinking, self-control) and social dynamics (proso-
689 cial tendencies, accountability responsiveness) (Shahrier et al., 2017, Timilsina et al., 2019, Hirose

690 and Kotani, 2022).

691 Retrospective approaches such as backcasting and the Future Ahead and Back (FAB) mech-
692 anism guide participants to learn from the past and imagine sustainable futures. Backcasting
693 identifies a desirable long-term goal and then traces backward to determine the steps required
694 to reach it Timilsina et al. (2020). The FAB mechanism advances this idea by introducing tem-
695 poral perspective-taking through three steps: (1) analyzing a current problem, (2) adopting the
696 perspective of future generations to propose strategies and (3) returning to the present to inte-
697 grate future requests into current actions. This process encourages logical reasoning and empathy,
698 helping participants consider the emotions and expectations of future generations (Shahrier et al.,
699 2017). Experimental results show that FAB can shift individuals from self-interested to sustain-
700 able choices, particularly among rural participants, older people and those with higher generativity
701 (Nakagawa et al., 2019b,a).

702 Prospective interventions include visioning, scenario planning and intergenerational account-
703 ability. These approaches encourage reflection on future possibilities and help participants artic-
704 ulate long-term aspirations. Visioning creates shared images of desirable futures, while scenario
705 planning explores alternative pathways under uncertainty (Hara et al., 2023, Timilsina et al., 2023).

706 . Intergenerational accountability strengthens moral responsibility by asking current generations
707 to justify their choices to future ones. Empirical studies show that these interventions have been
708 implemented in municipalities, educational institutions and organizations. Kyoto City has inte-
709 grated IFG and systems thinking into participatory processes for its 2050 decarbonization plan
710 (Hara et al., 2019, 2023). Similar approaches have been introduced in rural communities, uni-
711 versities and corporate settings to encourage long-term thinking (Bogacki and Letmathe, 2021,
712 Perez-Encinas et al., 2021). Visual and narrative tools also make abstract future impacts tangible
713 (Nakagawa and Saijo, 2021).

714 Emerging studies explore the potential of artificial intelligence (AI) and digital foresight tools
715 to enhance intergenerational decision-making. AI-based simulations, predictive analytics and
716 virtual-reality environments can expand deliberation by visualizing long-term consequences and

717 connecting imaginary future representatives (Nakawake and Kobayashi, 2024). These technologies
718 may improve accessibility and engagement, yet they raise ethical and institutional challenges,
719 such as algorithmic bias, transparency, legitimacy and environmental costs associated with high-
720 energy computing (Hauser, 2025). Within the FD framework, AI serves as an amplifier of human
721 reasoning and empathy rather than a replacement, supporting participants in understanding inter-
722 generational trade-offs.

723 FD integrates retrospective, prospective and AI-based mechanisms into a unified deliberative
724 process. Its effectiveness depends on social and cognitive conditions. Rural participants tend to
725 make more sustainable choices due to stronger social norms. Age-diverse groups often produce
726 better results through “creative friction.” High levels of generativity and self-control also con-
727 tribute to more consistent long-term decisions (Shahen et al., 2021, Hirose and Kotani, 2022).
728 Field experiments indicate that FD can produce persistent behavioral changes. A three-month
729 study in Bangladesh showed sustained increase in organic and decrease in nonorganic vegetable
730 consumptions (Mostafizur et al., 2025). These outcomes suggest that interventions can change
731 social norms and cognitive orientations without coercive regulation, consistent with ecological
732 economics, which views sustainability as an evolving process of learning and deliberation.

733 FD interventions culminate in developing shared visions, missions and strategies through sys-
734 tematic problem identification (Mostafizur et al., 2025). Participants examine how present con-
735 ditions arise from past choices, how current actions can become future problems and how future
736 generations might evaluate these outcomes (Hara et al., 2023). Visioning produces long-term aspi-
737 rations that integrate environmental and social objectives. Missions translate these aspirations into
738 guiding principles and strategies operationalize them into concrete plans that consider long-term
739 impacts (Timilsina et al., 2023). Effective outcomes depend on cognitive engagement, facilitation
740 quality and age diversity among participants. Municipal applications such as Kyoto’s FD process
741 demonstrate that deliberative mechanisms can lead to durable policy visions when outputs are for-
742 mally institutionalized (Hara et al., 2019, Nakagawa and Saijo, 2021). Overall, Future Design and
743 related interventions demonstrate strong potential to transform short-term preferences into long-

⁷⁴⁴ term commitments. They enable individuals and communities to bridge temporal divides through
⁷⁴⁵ reflection, empathy and learning, providing a behavioral foundation for intergenerational sustain-
⁷⁴⁶ ability.

⁷⁴⁷ 4 Conclusion

⁷⁴⁸ This paper has examined the literature on future generations (FG), intergenerational sustain-
⁷⁴⁹ ability (IS) and the Sustainable Development Goals (SDGs) through a systematic review com-
⁷⁵⁰ bining bibliometric and content analysis. The review shows a steady increase in research output
⁷⁵¹ from 2014 to 2025, with an annual growth rate of about 2.3 percent. The bibliometric analysis
⁷⁵² highlights Japan as the leading contributor, followed by the United States, China, Germany, Italy
⁷⁵³ and Australia, reflecting the concentration of research in developed economies. The thematic map
⁷⁵⁴ identifies future design, climate change and intergenerational sustainability as central but less de-
⁷⁵⁵ veloped areas, while generativity, intergenerational cooperation and fiscal sustainability appear as
⁷⁵⁶ specialized themes with limited integration. The SDG mapping shows strong attention to envi-
⁷⁵⁷ ronmental and institutional dimensions, especially SDG 12 on responsible consumption, SDG 13
⁷⁵⁸ on climate action and SDG 16 on peace and governance, whereas social and economic aspects
⁷⁵⁹ such as poverty reduction, equity and welfare distribution remain limited. These findings indicate
⁷⁶⁰ that while the field is expanding, it remains geographically concentrated and thematically uneven,
⁷⁶¹ calling for broader participation and stronger cross-disciplinary integration.

⁷⁶² This study advances understanding by developing a conceptual framework that synthesizes the
⁷⁶³ FG-IS-SDGs nexus and clarifies how interventions and policies can shape behaviors and decisions
⁷⁶⁴ toward the SDGs through cognitive, noncognitive and socioeconomic factors. The framework
⁷⁶⁵ consolidates six behavioral into three sets and links them to automatic and deliberative cognitive
⁷⁶⁶ processes. Two insights follow. First, existing studies mainly examine interventions and policies on
⁷⁶⁷ short-run behaviors and decisions, emphasizing generative, cooperative and sustainable behaviors
⁷⁶⁸ while overlooking inquisitive, creative and productive ones. Second, few studies examine long-run

769 changes in behaviors and decisions, implying the need to study how interventions and policies
770 influence deliberative cognitive processes for durable effects.

771 The framework provides guidance for translating behavioral insights into practical strategies.
772 Policymakers can embed long-term perspectives in decision making through intergenerational de-
773 liberation and accountability mechanisms. Educational institutions can cultivate inquisitiveness
774 and generativity through reflective and intergenerational learning. Communities and organizations
775 can adopt future design (FD), future ahead and back (FAB) and backcasting to co-create shared
776 vision, missions and strategies that integrate sustainability into everyday practice. Together, these
777 applications connect behavioral pathways with long-term perspectives to promote collective action
778 across generations.

779 Future research should investigate how behavioral and cognitive changes persist over time and
780 across contexts through longitudinal and multi-level studies. Comparative and cross-cultural evi-
781 dence is needed to examine the robustness of deliberative cognitive processes (DCPs) under dif-
782 ferent social and institutional conditions. Creative and productive behaviors remain underexplored
783 and deserve more attention to clarify how innovation, technology and adaptive capacity contribute
784 to intergenerational resilience. Digital platforms, artificial intelligence and participatory systems
785 also hold potential for facilitating reflection, accountability and behavioral monitoring.

786 Achieving the SDGs requires transformation not only in policy and technology but also in hu-
787 man cognition, values and institutional design. Embedding concern for future generations within
788 governance, education and community systems strengthens the behavioral foundations of sustain-
789 ability and accelerates progress toward long-term well-being. Integrating deliberation, cooperation
790 and creativity in decision making ensures that societies act with foresight, fulfilling the SDGs' cen-
791 tral promise to advance equity and sustainability across generations.

792 We acknowledge several limitations. This review is limited to English-language publications
793 indexed in Scopus and focuses on behavioral and decision mechanisms. Future studies may extend
794 coverage to non-English and gray literature, employ quantitative meta-analysis and test the pro-
795 posed framework through field experiments and policy applications. These efforts can strengthen

⁷⁹⁶ evidence on how interventions and policies can induce long-run changes in behaviors and decisions
⁷⁹⁷ and accelerate progress towards the SDGs across generations.

References

Abrahamse, W. (2020). How to effectively encourage sustainable food choices: A mini-review of available evidence. *Frontiers in psychology*, 11:589674.

Ackerman, S., Zuroff, D., and Moskowitz, D. (2000). Generativity in midlife and young adults: Links to agency, communion, and subjective well-being. *The international journal of aging and human development*, 50:17–41.

Adnan, S., Hay, D., and van Staden, C. (2018). The influence of culture and corporate governance on corporate social responsibility disclosure: A cross-country analysis. *Journal of cleaner production*, 198:820–832.

Allcott, H. and Rogers, T. (2014). The short-run and long-run effects of behavioral interventions: Experimental evidence from energy conservation. *American economic review*, 104:3003–3037.

Amiri, B., Jafarian, A., and Abdi, Z. (2024). Nudging towards sustainability: A comprehensive review of behavioral approaches to eco-friendly choice. *Discover sustainability*, 5:444.

Atta, N. and Sharifi, A. (2024). A systematic literature review of the relationship between the rule of law and environmental sustainability. *Sustainable development*, 32:7051–7068.

Bagdi, T., Ghosh, S., Sarkar, A., Hazra, A., Balachandran, S., and Chaudhury, S. (2023). Evaluation of research progress and trends on gender and renewable energy: A bibliometric analysis. *Journal of cleaner production*, 423:138654.

Balmford, B., Marino, M., and Hauser, O. (2024). Voting sustains intergenerational cooperation, even when the tipping point threshold is ambiguous. *Environmental and resource economics*, 87:167–190.

Bamberg, S. and Möser, G. (2007). Twenty years after Hines, Hungerford, and Tomera: A new meta-analysis of psycho-social determinants of pro-environmental behaviour. *Journal of environmental psychology*, 27:14–25.

Baumgartner, T., Guizar, E., and Knoch, D. (2023). Neural mechanisms underlying interindividual differences in intergenerational sustainable behavior. *Scientific reports*, 13:17357.

Bengtsson, M., Alfredsson, E., Cohen, M., Lorek, S., and Schroeder, P. (2018). Transforming systems of consumption and production for achieving the sustainable development goals: Moving beyond efficiency. *Sustainability science*, 13:1533–1547.

Biswas, T. (2023). Becoming good ancestors: A decolonial, childist approach to global intergenerational sustainability. *Children and society*, 37:1005–1020.

Bitas, K. (2020). A bioeconomic approach to sustainability with ecological thresholds as an operational indicator. *Environmental and sustainability indicators*, 6:100027.

Bogacki, J. and Letmathe, P. (2021). Representatives of future generations as promoters of sustainability in corporate decision processes. *Business strategy and the environment*, 30:237–251.

Cabra, J. and Uribe, D. (2013). Creative behavior. In Carayannis, E., Dubina, I., Seel, N., Campbell, D. F. J., and Uzunidis, D., editors, *Encyclopedia on creativity, invention, innovation, and entrepreneurship*, pages 267–271. Springer, New York, NY.

Carrigan, M., Wells, V., and Athwal, N. (2023). ‘I’d never cook it now’: An exploration of intergenerational transference and its role in facilitating family food sustainability. *European journal of marketing*, 57:1352–1379.

Cerulo, K., Leschziner, V., and Shepherd, H. (2021). Rethinking culture and cognition. *Annual review of sociology*, 47:63–85.

Chang, C., Kristensen, N., Le, N., Tan, C., and Carrasco, L. (2021). Having a stake in the future and perceived population density influence intergenerational cooperation. *Royal society open science*, 8:210206.

Chater, N. and Loewenstein, G. (2023). The i-frame and the s-frame: How focusing on individual-level solutions has led behavioral public policy astray. *Behavioral and brain sciences*, 46:e147.

Chiswell, H. (2018). From generation to generation: Changing dimensions of intergenerational farm transfer. *Sociologia ruralis*, 58:104–125.

Conway, S., McDonagh, J., Farrell, M., and Kinsella, A. (2016). Cease agricultural activity forever? Underestimating the importance of symbolic capital. *Journal of rural studies*, 44:164–176.

Corral-Verdugo, V. and Frías-Armenta, M. (2016). The sustainability of positive environments. *Environment, development and sustainability*, 18:965–984.

Dangelico, R., Fraccascia, L., and Nastasi, A. (2020). National culture’s influence on environmental performance of countries: A study of direct and indirect effects. *Sustainable development*, 28:1773–1786.

de Paula, S., Kulcar, V., and Schmidt, K. (2024). Act like there is a tomorrow—contact and affinity with younger people and legacy motivation as predictors of climate protection among older people. *Sustainability*, 16:1477.

Deci, E. and Ryan, R. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. *Psychological inquiry*, 11:227–268.

Delmas, M. and Gergaud, O. (2014). Sustainable certification for future generations: The case of family business. *Family business review*, 27:228–243.

Diprose, K., Liu, C., Valentine, G., Vanderbeck, R., and McQuaid, K. (2019). Caring for the future: Climate change and intergenerational responsibility in China and the UK. *Geoforum*, 105:158–167.

Doerwald, F., Zacher, H., van Yperen, N., and Scheibe, S. (2021). Generativity at work: A meta-analysis. *Journal of vocational behavior*, 125:103521.

Downey, H., Threlkeld, G., and Warburton, J. (2016). How do older Australian farming couples construct generativity across the life course?: A narrative exploration. *Journal of aging studies*, 38:57–69.

Drews, S. (2025). Towards systems-oriented behavioral ecological economics. *Ecological economics*, 227:108402.

Erikson, E. (1963). *Childhood and society*. Norton, New York, second edition.

Essiz, O. and Mandrik, C. (2022). Intergenerational influence on sustainable consumer attitudes and behaviors: Roles of family communication and peer influence in environmental consumer socialization. *Psychology and marketing*, 39:5–26.

Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. *Annual review of psychology*, 59:255–278.

Evans, J. and Stanovich, K. (2013). Dual-process theories of higher cognition: Advancing the debate. *Perspectives on psychological science*, 8:223–241.

Farrukh, M., Ansari, N., Raza, A., Wu, Y., and Wang, H. (2022). Fostering employee's pro-environmental behavior through green transformational leadership, green human resource management, and environmental knowledge. *Technological forecasting and social change*, 179:121643.

Fischer, M., Irlenbusch, B., and Sadrieh, A. (2004). An intergenerational common pool resource experiment. *Journal of environmental economics and management*, 48:811–836.

Fleurbaey, M. (2015). On sustainability and social welfare. *Journal of environmental economics and management*, 71:34–53.

Fornwagner, H. and Hauser, O. (2022). Climate action for my children. *Environmental resource economics*, 81:95–130.

Galleli, B. and Amaral, L. (2025). Bridging institutional theory and social and environmental efforts in management: A review and research agenda. *Journal of management*, 0:0.

Gronchi, G. and Giovannelli, F. (2018). Dual process theory of thought and default mode network: A possible neural foundation of fast thinking. *Frontiers in psychology*, 9:1237.

Grossbaum, M. and Bates, G. (2002). Correlates of psychological well-being at midlife: The role of generativity, agency and communion, and narrative themes. *International journal of behavioral development*, 26:120–127.

Grüner, B. and Konzett, S. (2024). Engagement of new entrants in mountain farming through the lens of generativity: Lack of family farming background and its implications in Alpine Austria and Italy. *Sociologia ruralis*, 64:325–352.

Guida, V., Klaser, K., and Mittone, L. (2025). Building sustainable futures through soft institutional interventions in the climate change context: An intergenerational experiment. *Futures*, 166:103531.

Guizar, R., Baumgartner, T., and Knoch, D. (2022). Interindividual differences in intergenerational sustainable behavior are associated with cortical thickness of the dorsomedial and dorsolateral prefrontal cortex. *NeuroImage*, 264:119664.

Halali, E. and Perez, O. (2025). Binding the future boosts intergenerational sustainability. *npj Climate Action*, 4:15.

Hara, K., Kitakaji, Y., Sugino, H., Yoshioka, R., Takeda, H., Hizen, Y., and Saijo, T. (2021). Effects of experiencing the role of imaginary future generations in decision-making: a case study of participatory deliberation in a Japanese town. *Sustainability science*, 16:1001–1016.

Hara, K., Nomaguchi, Y., Fukutomi, S., Kuroda, M., Fujita, K., Kawai, Y., Fujita, M., and Kobashi, T. (2023). Policy design by “imaginary future generations” with systems thinking : A practice by Kyoto city towards decarbonization in 2050. *Futures*, 154:103272.

Hara, K., Yoshioka, R., Kuroda, M., Kurimoto, S., and Saijo, T. (2019). Reconciling intergenerational conflicts with imaginary future generations: Evidence from a participatory deliberation practice in a municipality in Japan. *Sustainability Science*, 14:1605–1619.

Hauser, O. (2025). Climate change, intergenerational fairness, and the promises and pitfalls of artificial intelligence. *Environmental resource economics*, 88:2689–2706.

Hauser, O., Rand, D., Peysakhovich, A., and Nowak, M. (2014). Cooperating with the future. *Nature*, 511:220–223.

Hirose, J. (2024). How do question-answer exchanges among generations matter for children’s happiness? *PLoS ONE*, 19:e0303523.

Hirose, J. (2025). Inquisitiveness, generativity, and subjective well-being in relation to intergenerational skills and knowledge: Evidence from a rural Japanese community. *Discover education*, 4:376.

Hirose, J. and Kotani, K. (2022). How does inquisitiveness matter for generativity and happiness? *PLoS ONE*, 17:e0264222.

Hirose, J., Kotani, K., and Managi, S. (2023). Do autonomy and inquisitiveness contribute to SDGs? Implications from the matrilineal island of Palau. *Economic analysis and policy*, 79:303–318.

Hofstede, G. (2001). *Culture's consequences: Comparing values, behaviors, institutions and organizations across nations*. SAGE Publications.

House, R., Hanges, P., Javidan, M., Dorfman, P., and Gupta, V. (2004). *Culture, leadership, and organizations: The GLOBE study of 62 societies*. SAGE Publications.

Hu, S., Zheng, X., Zhang, N., and Zhu, J. (2018). The impact of mortality salience on intergenerational altruism and the perceived importance of sustainable development goals. *Frontier in psychology*, 9:1399.

Huang, C., Liu, H., Lin, T., and Lai, J. (2022). Revisiting Hofstede's dimensions of national culture and environmental sustainability. *Energy and environment*, 35:1251–1269.

Hüfner, K. (2000). UNESCO–United Nations Educational, Scientific and Cultural Organization. In *A concise encyclopedia of the United Nations*, pages 557–560. Brill Nijhoff.

Inoue, Y., Mifune, N., and Saijo, T. (2023). Positive reputation for altruism toward future generations regardless of the cost for current others. *Frontiers in psychology*, 13:895619.

Ioannou, I. and Serafeim, G. (2012). What drives corporate social performance? the role of nation-level institutions. *Journal of international business studies*, 43:834–864.

Jiang, W., Wang, X., and Du, L. (2023). Intergenerational externalities and corporate green innovation. *Sustainable development*, 31:2212–2221.

Jingchao, Z., Kotani, K., and Saijo, T. (2021). Are societies becoming proselyt? A topographical difference under fast urbanization in China. *Environment, development and sustainability*, 23:12976–12993.

Jones, B. and McAdams, D. (2013). Becoming generative: Socializing influences recalled in life stories in late midlife. *Journal of adult development*, 20:158–172.

Kahneman, D. (2011). *Thinking, fast and slow*. Macmillan.

Kamijo, Y., Komiya, A., Mifune, N., and Saijo, T. (2017). Negotiating with the future: Incorporating imaginary future generations into negotiations. *Sustainability science*, 12:409–420.

Katsuki, S. and Hizen, Y. (2020). Does voting solve the intergenerational sustainability dilemma? *Sustainability*, 12:6311.

Kaufmann, D. and Kraay, A. (2024). The worldwide governance indicators: Methodology and 2024 update. Technical Report WPS10952, World Bank Group.

Keyes, C. and Ryff, C. (1998). Generativity in adult lives: Social structural contours and quality of life consequences. In *Generativity and adult development: How and why we care for the next generation*, pages 227–263. American Psychological Association.

Kobayashi, K. and Chiba, A. (2020). Intergenerational bubbles of beliefs for sustainability. *Sustainability*, 12:10652.

Koirala, P., Timilsina, R., and Kotani, K. (2021). Deliberative forms of democracy and intergenerational sustainability dilemma. *Sustainability*, 13:7377.

Komp-Leukkunen, K. and Sarasma, J. (2024). Social sustainability in aging populations: A systematic literature review. *The gerontologist*, 64:1–12.

Law, K., Colaizzi, G., and Syropoulos, S. (2025). Climate change is an intergenerational challenge that requires intergenerationally focused behavioral solutions. *Current opinion in behavioral sciences*, 61:101467.

Leiß, G. and Zehrer, A. (2018). Intergenerational communication in family firm succession. *Journal of family business management*, 8:75–90.

Li, X., Mohd, N., Mohd, Y., Adeline, A., Zhang, J., Shi, Q., and Wang, Z. (2024). The impact of intergenerational transmission of cultural capital on holiday loyalty. *The social science journal*, pages 1–18.

Loewenstein, G. and Chater, N. (2017). Putting nudges in perspective. *Behavioural public policy*, 1:26–53.

Lohse, J. and Waichman, I. (2020). The effects of contemporaneous peer punishment on cooperation with the future. *Nature communications*, 11:1815.

Marteau, T., Hollands, G., and Fletcher, P. (2012). Changing human behavior to prevent disease: The importance of targeting automatic processes. *Science*, 337:1492–1495.

Mavrommatis, G., Rogers, S., Howarth, R., and Borsuk, M. (2020). Representing future generations in the deliberative valuation of ecosystem services. *Elementa: science of the anthropocene*, 8:22.

McAdams, D. and Aubin, E. (1992). A theory of generativity and its assessment. *Journal of personality and social psychology*, 62:1003–1015.

Millová, K. and Blatný, M. (2018). Objective and subjective work characteristics and their relation to the successful development of adults in a society after a macrosocial transition. *Studia paedagogica*, 23:59–75.

Mishra, M., Desul, S., Santos, C., Mishra, S., Kamal, A., Goswami, S., Kalumba, A., Biswal, R., Silva, R., Santos, C., and Baral, K. (2024). A bibliometric analysis of sustainable development goals (SDGs): A review of progress, challenges, and opportunities. *Environment, development and sustainability*, 26:11101–11143.

Miska, C., Szőcs, I., and Schiffinger, M. (2018). Culture's effects on corporate sustainability practices: A multi-domain and multi-level view. *Journal of world business*, 53:263–279.

Miyake, K., Hizen, Y., and Saijo, T. (2023). Proxy voting for future generations: A laboratory experiment using the general public. *Sustainability*, 15:14310.

Moldavanova, A. (2016). Two narratives of intergenerational sustainability: A framework for sustainable thinking. *American review of public administration*, 46:526–545.

Mostafizur, R., Asma, K., Islam, M., Saijo, T., and Kotani, K. (2025). Does future design induce people to make a persistent change to sustainable food consumption? *Food policy*, 135:102916.

Mullainathan, S. and Shafir, E. (2013). *Scarcity: Why having too little means so much*. Macmillan.

Naciti, V., Cesaroni, F., and Pulejo, L. (2022). Corporate governance and sustainability: A review of the existing literature. *Journal of management and governance*, 26:55–74.

Nakagawa, Y. (2020). Taking a future generation's perspective as a facilitator of insight problem-solving: Sustainable water supply management. *Sustainability*, 12:1000.

Nakagawa, Y., Arai, R., Kotani, K., Nagano, M., and Saijo, T. (2019a). Intergenerational retrospective viewpoint promotes financially sustainable attitude. *Futures*, 114:102454.

Nakagawa, Y., Kotani, K., Matsumoto, M., and Saijo, T. (2019b). Intergenerational retrospective viewpoints and individual policy preferences for future: A deliberative experiment for forest management. *Futures*, 105:40–53.

Nakagawa, Y. and Saijo, T. (2020a). Can individuals caring little about future generations serve as their representatives? *Futures*, 124:102626.

Nakagawa, Y. and Saijo, T. (2020b). Future design as a metacognitive intervention for presentism. *Sustainability*, 12:7552.

Nakagawa, Y. and Saijo, T. (2021). A visual narrative for taking future generations' perspectives. *Sustainability science*, 16:983–1000.

Nakawake, Y. and Kobayashi, Y. (2024). Exploring new technologies for the future generation: Exploration–exploitation trade-off in an intergenerational framework. *Royal society open science*, 11:231108.

North, D. (1990). *Institutions, institutional change and economic performance*. Political Economy of Institutions and Decisions. Cambridge university press, Cambridge.

Oliveira, R. (2018). Back to the future: The potential of intergenerational justice for the achievement of the sustainable development goals. *Sustainability*, 10:427.

Oliveira, R. (2023). Irreplaceable goods: Bridging sustainability and intergenerational sufficiency. *Ethics, policy and environment*, 26:438–454.

Ordonez-Ponce, E. (2023). The role of local cultural factors in the achievement of the sustainable development goals. *Sustainable development*, 31:1122–1134.

Ostrom, E. (2009). A general framework for analyzing sustainability of social-ecological systems. *Science*, 325:419–422.

Page, M., McKenzie, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T., Loder, E., Mayo-Wilson, E., McDonald, S., McGuinness, L., Stewart, L., Thomas, J., Tricco, A., Welch, V., Whiting, P., and Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. *BMJ*, 372:n71.

Panayotou, T. (1997). Demystifying the environmental Kuznets curve: Turning a black box into a policy tool. *Environment and development economics*, 2:465–484.

Pandit, A., Nakagawa, Y., Timilsina, R., Kotani, K., and Saijo, T. (2021). Taking the perspectives of future generations as an effective method for achieving sustainable waste management. *Sustainable production and consumption*, 27:1526–1536.

Park, H., Russell, C., and Lee, J. (2007). National culture and environmental sustainability: A cross-national analysis. *Journal of economics and finance*, 31:104–121.

Perez-Encinas, A., De, P., Bueno, Y., and Santos, B. (2021). Intergenerational entrepreneurship to poster sustainable development: A methodological training proposal. *Sustainability*, 13:9654.

Rose, M. (2024a). Can we represent future generations in myopic democracies? – Analyzing the design, feasibility and viability of institutional guardians of future generations. *Policy studies*, pages 1–21.

Rose, M. (2024b). Institutional proxy representatives of future generations: A comparative analysis of types and design features. *Politics and governance*, 12:7745.

Roy, S. and Ayalon, L. (2024). “They did not know what they were doing”: Climate change and intergenerational compassion. *The gerontologist*, 64:1–9.

Saijo, T. (2020). Future design: Bequeathing sustainable natural environments and sustainable societies to future generations. *Sustainability*, 12:6467.

Saijo, T. (2024). Futurability, survivability, and the non-steady state in the intergenerational sustainability dilemma. *Politics and governance*, 12:7749.

Sedita, S., Blasi, S., and Yang, J. (2022). The cultural dimensions of sustainable development: A cross-country configurational analysis. *Sustainable development*, 30:1838–1849.

Shahen, M., Kotani, K., and Saijo, T. (2021). Intergenerational sustainability is enhanced by taking the perspective of future generations. *Scientific reports*, 11:2437.

Shahen, M., Masaya, W., Kotani, K., and Saijo, T. (2020). Motivational factors in intergenerational sustainability dilemma: A post-interview analysis. *Sustainability*, 12:7078.

Shahen, M., Shahrier, S., and Kotani, K. (2019). Happiness, generativity and social preferences in a developing country: A possibility of future design. *Sustainability*, 11:5256.

Shahrier, S., Kotani, K., and Saijo, T. (2017). Intergenerational sustainability dilemma and the degree of capitalism in societies: a field experiment. *Sustainability science*, 12:957–967.

Sharafuddin, M. and Madhavan, M. (2020). Thematic evolution of blue tourism: A scientometric analysis and systematic review. *Global business review*, 25:533–554.

Spijkers, O. (2018). Intergenerational equity and the sustainable development goals. *Sustainability*, 10:3836.

Stanes, E., Klocker, N., and Gibson, C. (2015). Young adult households and domestic sustainability. *Geoforum*, 65:46–58.

Summers, J. and Smith, L. (2014). The role of social and intergenerational equity in making changes in human well-being sustainable. *Ambio*, 43:718–728.

Sunstein, C. (2015). The ethics of nudging. *Yale journal on regulation*, 32:413–450.

Sweileh, W. (2020). Bibliometric analysis of scientific publications on “sustainable development goals” with emphasis on “good health and well-being” goal (2015–2019). *Global health*, 16:68.

Syropoulos, S., Law, K., and Young, L. (2023). National differences in age and future-oriented indicators relate to environmental performance. *Sustainability*, 16:276.

Teodoro, J., Doorn, N., Kwakkel, J., and Comes, T. (2023). Flexibility for intergenerational justice in climate resilience decision-making: An application on sea-level rise in the Netherlands. *Sustainability science*, 18:1355–1365.

Thaler, R. and Sunstein, C. (2008). *Nudge: Improving decisions about health, wealth, and happiness*. Yale University Press.

Timilsina, R., Kotani, K., and Kamijo, Y. (2019). Generativity and social value orientation between rural and urban societies in a developing country. *Futures*, 105:124–132.

Timilsina, R., Kotani, K., Nakagawa, Y., and Saijo, T. (2021). Concerns for future generations in societies: A deliberative analysis of the intergenerational sustainability dilemma. *Journal of behavioral and experimental economics*, 90:101628.

Timilsina, R., Kotani, K., Nakagawa, Y., and Saijo, T. (2022). Intragenerational deliberation and intergenerational sustainability dilemma. *European journal of political economy*, 73:102131.

Timilsina, R., Kotani, K., Nakagawa, Y., and Saijo, T. (2023). Does being intergenerationally accountable resolve the intergenerational sustainability dilemma? *Land economics*, 99:644–667.

Timilsina, R., Nakagawa, Y., and Kotani, K. (2020). Exploring the possibility of linking and incorporating future design in backcasting and scenario planning. *Sustainability*, 12:9907.

Tonn, B. (2018). Philosophical, institutional, and decision making frameworks for meeting obligations to future generations. *Futures*, 95:44–57.

Triandis, H. (1995). *Individualism and collectivism*. Routledge.

Tse, W. (2024). Intergenerational knowledge sharing in sustainable tourism: Social learning theory perspective. *Asia pacific journal of tourism research*, 29:1369–1381.

Urien, B. and Kilbourne, W. (2011). Generativity and self-enhancement values in eco-friendly behavioral intentions and environmentally responsible consumption behavior. *Psychology and marketing*, 28:69–90.

van Gestel, L., Adriaanse, M., and de Ridder, D. (2021). Motivated by default: How nudges facilitate people to act in line with their motivation. *Motivation science*, 7:319–330.

Vatansever, D., Menon, D., and Stamatakis, E. (2017). Default mode contributions to automated information processing. *Proceedings of the national academy of sciences of the United States of America*, 114:12821–12826.

Wang, J., Su, M., Wall, G., Dong, H., and Zhang, H. (2024). Intergenerational evolution of intangible cultural heritage through tourism development: Perspectives of practitioners in Hangzhou China. *International journal of heritage studies*, 30:968–991.

Whear, R., Campbell, F., Rogers, M., Sutton, A., Robinson-Carter, E., Sharpe, R., Cohen, S., Fergy, R., Garside, R., Kneale, D., Melendez-Torres, G., and Thompson-Coon, J. (2023). What is the effect of intergenerational activities on the wellbeing and mental health of older people?: A systematic review. *Campbell systematic reviews*, 19:e1355.

Wu, J., Zhang, L., and Ren, X. (2022). Incorporating the co-creation method into social innovation design to promote intergenerational integration: A case study of a public square. *International journal of environmental research and public health*, 19:12908.

Yamaguchi, N., Bernardino, E., Ferreira, M., Lima, B., Pascotini, M., and Yamaguchi, M. (2023). Sustainable development goals: A bibliometric analysis of literature reviews. *Environmental science and pollution research*, 30:5502–5515.

Yamane, T. and Kaneko, S. (2021). Is the younger generation a driving force toward achieving the sustainable development goals? survey experiments. *Journal of cleaner production*, 292:125932.

Zhang, M. (2018). Intergenerational justice and solidarity on sustainability in China: A case study in Nanjing, Yangtze River Delta. *Sustainability*, 10:4296.