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iom, non-manipulability of unused skills (NUS), where the latter represents
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1 Introduction

In this paper, Nash implementation of desired resource allocations is dis-

cussed in production economies with possibly unequal labor skills, which are

unknown to the planner (the mechanism coordinator). A typical example

of such economies is fisheries, where the mechanism design for Nash imple-

mentation is of practical interest. In fisheries, the freedom of operation may

lead each individual fisher to overexploit resources with scant regard for the

future sustainability of fishing stocks. Therefore, countries that share fishing

grounds work on resource management and employ incentive schemes to con-

trol individual operations. For instance, in Norway, the harvesting of marine

resources is regulated to ensure that source stocks are self-renewable.1234

Most of the vast literature on implementation theory presumes that while

social planners cannot know each individual’s preferences, they do know the

set of feasible alternatives. In economic environments, however, examples

abound of resource allocation problems in which the planner may not know

in advance the set of feasible alternatives. In this case, each individual’s

private information consists of not only his or her preferences but also his

or her endowments and/or human capital. In such problems, as Jackson

(2001) pointed out, the set of feasible alternatives (feasible allocations) is en-

dogenously determined based on individuals’ strategies, over which the social

planner may have no control. Given this setting, it is necessary to extend

1Sustainable management requires knowledge on the size of the stocks, their age com-

position, their distribution, and the environment in which they live. Every year, data from

Norwegian scientific surveys and from fishers are compared with data from other countries

(Norwegian marine scientists cooperate closely with researchers from other countries, es-

pecially Russia) and assessed by ICES, the International Council for the Exploration of

the Sea.
2This practice is in accordance with international agreements including the 1982 UN

Law of the Sea Convention, the 1995 UN Fish Stocks Agreement, and the 1995 FAO Code

of Conduct for Responsible Fisheries.
3Recently, an ecosystem approach is increasingly being applied to Norwegian fisheries

management. This takes into account not only how harvesting affects fish stocks, but also

how fisheries affect the marine environment for living marine resources in general.
4Given that the total allowable catch in the Barents Sea is allocated through negotia-

tions under international agreements, the country’s quotas are distributed among different

groups of fishers and then subdivided and allocated among fishing boats in each group.

With this in mind, the resource management mechanism in Norway is expected to imple-

ment fishing allocations by monitoring and punishing each fishing boat’s overexploitation

of resources.
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the classical framework of implementation theory into a framework with en-

dogenous feasible allocations that allows each individual to misrepresent not

only his or her preferences but also his or her endowments or human capital.

Hurwicz et al. (1995) analyzed endogenous feasible allocations in Nash

implementation under economic environments, while Tian and Li (1995),

Hong (1995), and Tian (1999, 2000, 2009) all addressed the above issue by

designing a mechanism to implement a specific social choice correspondence

(SCC) such as the Walrasian solution. In these works, each individual is
allowed to understate (or withhold) his or her own material endowments, but

he or she is not allowed to overstate them, since the planner is assumed to

require individuals to “place the claimed endowments on the table” [Hurwicz

et al. (1995)].

One of the essential features of production economies with unknown skills,

however, is that each individual is allowed to not only understate but also

overstate his or her endowment of labor skill. Because in this framework the

planner cannot require individuals to place the claimed endowments of their

skills on the table in advance of production. Another prominent feature of

such economies, as discussed by Yamada and Yoshihara (2008), is that the

planner may not be authorized to allocate labor hours among agents consis-

tent with the desired allocations of consumption bundles and leisure. Thus,

the main role of the planner would be to simply allocate the outputs produced

among agents while leaving to them decisions about their supplies of labor

hours in the production process. Among the several studies5 of implementa-

tion in production economies, some authors such as Yamada and Yoshihara

(2007, 2008) address this essential feature and discuss implementation by

mechanisms with price-quantity messages.

In contrast, this paper studies Nash implementation in production economies

with unknown skills, by considering a much broader class of available mecha-

nisms. The restriction that specifies the class of available mechanisms in this

paper is very subtle, in that it allows the available mechanisms to contain the

class of canonical mechanisms. Here, a mechanism is called canonical if it

makes each agent announce a profile of utility functions. In addition, all avail-

able canonical mechanisms are required to be forthright [Saijo, Tatamitani,

and Yamato (1996); Lombardi and Yoshihara (2013)]. It is well-known that

5In addition to the above-mentioned studies, for instance, Suh (1995), Yoshihara (1999),

Kaplan and Wettstein (2000), and Tian (2009) all proposed simple or natural mechanisms

to implement particular SCCs, whereas Shin and Suh (1997) and Yoshihara (2000) char-
acterized SCCs implementable by simple or natural mechanisms.
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Maskin monotonicity [Maskin (1999)] is the necessary and sufficient condition

for Nash implementation in production economies when skills are known to

the planner. Moreover, for this characterization, constructing a mechanism

within the class of canonical ones with forthrightness is sufficient.

However, it is uncertain whether such a property is still preserved in

production economies with unknown skills. First, remember that, in the

literature of Nash implementation, Maskin monotonicity is usually defined

with an exogenously fixed set of feasible allocations. However, as the set

of feasible allocations is endogenously determined in production economies

with unknown skills, it is unclear how Maskin monotonicity can be defined.

Second, in this paper’s framework, as economies evolve not only because of

changes in utility functions but also owing to changes in skills, Nash im-

plementability of SCCs should be examined when the unknown skills are
changed. This new feature may require another axiom to characterize Nash

implementation in this context.

This paper provides a reformulation of Maskin monotonicity, calledMonotonic-

ity (M), which is suited to the case of production economies with unknown

skills. Moreover, a new axiom called non-manipulability of unused skills

(NUS) is introduced. This axiom stipulates the behavior of SCCs with re-
spect to some specific changes in skills. It has an independence property with

respect to skill changes in a quite weak sense, as discussed in section 3 later.

This paper shows that Nash implementability of interior and efficient

SCCs by canonical mechanisms is fully characterized byM and NUS. Note

that Nash implementation by canonical mechanisms is equivalent to Nash

implementation whenever the production function is strictly concave. This

is becauseNUS is shown to be vacuously satisfied in economies with strictly

concave production functions. However, the latter axiom is by no means triv-

ial. There is an economically meaningful SCC, called the maximal workfare
solution, which satisfies M, but not NUS in economies with linear produc-

tion functions. Thus, although this solution is implementable in the classical

framework where the endowments of skills are known to the planner, it is

non-implementable in the extended framework where they are unknown.

The remainder of this paper is organized as follows. Section 2 defines the

model. Section 3 fully characterizes Nash implementation by the canonical

mechanisms, and Section 4 offers some examples of implementable and non-

implementable SCCs. Concluding remarks are presented in Section 5.

4



2 The Basic Model

2.1 Economic Environments and SCCs

There are two goods, one of which is an input (labor time) x ∈ R+ to be
used to produce the other good y ∈ R+.6 There is a set N = {1, . . . , n} of
agents, where 2 ≤ n < +∞ holds in general unless a further specification is

imposed. Each agent i’s consumption is denoted by zi = (xi, yi), where xi
denotes labor time and yi output. All agents face a common upper bound of
labor time x̄, where 0 < x̄ < +∞, and so they have the same consumption
set Z ≡ [0, x̄]×R+.
Each i’s preferences are defined on Z and represented by a utility func-

tion ui : Z → R, which is continuous and quasi-concave on Z and strictly
monotonic (decreasing in labor time and increasing in the share of output)

on
◦
Z ≡ [0, x̄)×R++.7 Moreover:

Assumption 1: ∀i ∈ N , ∀zi ∈
◦
Z, ∀z0i ∈ Z\

◦
Z, ui (zi) > ui (z

0
i).

We use U to denote the class of such utility functions.
Each i has labor skill si ∈ R++. The universal set of skills for each agent

is denoted by S = R++.8 Labor skill si ∈ S is i’s effective labor supply
per hour measured in efficiency units. This skill can also be interpreted as

i’s labor intensity exercised in production.9 Thus, if the agent’s labor

time is xi ∈ [0, x̄] and labor skill si ∈ S, then sixi ∈ R+ denotes the agent’s
effective labor contribution to production measured in efficiency units.

The production technology is a function f : R+ → R+, which is continuous,
strictly increasing, and concave such that f (0) = 0. For simplicity, we fix

6The symbol R+ denotes the set of non-negative real numbers.
7The symbol R++ denotes the set of positive real numbers.
8For any two sets X and Y , X ⊆ Y whenever any x ∈ X also belongs to Y , and X = Y

if and only if X ⊆ Y and Y ⊆ X.
9It might be more natural to define labor skill and labor intensity in a discriminative

way: for example, if si ∈ S is i’s labor skill, then i’s labor intensity is a variable si, where
0 < si ≤ si. In such a formulation, we may view the amount of si as being determined
endogenously by agent i. In spite of this more natural view, we assume in the following
discussion that labor intensity is a constant value, si = si, for the sake of analytical
simplicity. The main theorems in the following discussion remain valid with a few changes

to the settings of the economic environments, even if labor intensity was assumed to be

varied.
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f . Thus, an economy is a pair of profiles e ≡ (u,s) with u = (ui)i∈N ∈ Un
and s = (si)i∈N ∈ Sn. Denote the class of such economies by E ≡ Un × Sn.
Given s ∈ Sn, an allocation z = (xi, yi)i∈N ∈ Zn is feasible for s

if
P
yi ≤ f (

P
sixi). Denote by Z (s) the set of feasible allocations for

s ∈ Sn. Given s ∈ Sn, a feasible allocation z ∈ Z (s) is interior if zi ∈
◦
Z

for all i ∈ N . Denote by
◦
Z (s) the set of interior feasible allocations for

s ∈ Sn. An allocation z = (zi)i∈N ∈ Zn is Pareto-efficient for e =
(u, s) ∈ E if z ∈ Z (s) and there does not exist z0 = (z0i)i∈N ∈ Z (s) such
that for all i ∈ N , ui (z0i) ≥ ui (zi), and for some i ∈ N , ui (z0i) > ui (zi).
Let P (e) denote the set of Pareto-efficient allocations for e ∈ E . Let the
unit simplex ∆ ≡ {p = (px, py) ∈ R+ ×R+ | px + py = 1} be the set of price
vectors, where px represents the price of labor (measured in efficiency units)
and py the price of output. Then, a price vector p ∈ ∆ is an efficiency

price for z = (x,y) ∈ P (e) at e = (u, s) ∈ E if (i) for each x0 ∈ R+,
pyf (x

0)− pxx0 ≤
P
(pyyi − pxsixi); and (ii) for each i ∈ N and each z0i ∈ Z,

ui (z
0
i) ≥ ui (zi) implies pyy0i − pxsix0i ≥ pyyi − pxsixi. The set of efficiency

prices for z at e is denoted by ∆P (e,z).
A social choice correspondence (SCC) or solution is a mapping

ϕ : E ³ Zn such that for each e = (u, s) ∈ E , ∅ 6= ϕ (e) ⊆ Z (s). Given ϕ,
z∈ Zn is ϕ-optimal for e ∈ E if z ∈ ϕ (e). An SCC ϕ is called efficient if
for each e = (u, s) ∈ E , ϕ (e) ⊆ P (e). An SCC ϕ is called interior if for

each e = (u, s) ∈ E , ϕ (e) ⊆
◦
Z (s).

2.2 Mechanisms

In the standard Nash implementation literature, a mechanism (game form)

is defined as a pair of a set of strategy profiles and an outcome function,

where the latter is a single-valued mapping from the set of strategy profiles

to the set of feasible outcomes. Such a general formulation can work when

implementation problems are defined in pure exchange economies as well

as in production economies with known skills. However, if implementation

problems are discussed in production economies with unknown skills, such

a formulation is unsuitable. This is mainly due to the prominent feature of

production economies with unknown skills: that the set of feasible allocations

is unknown to the coordinator. This necessitates a reformulation.

Let us define the mechanisms and Nash implementation in production

economies with unknown skills. First, we assume throughout the following
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analysis that the production function f is known and that total output after
production is observable to the coordinator. This is a common feature of im-

plementation problems in production economies for the case of not withhold-

ing,10 since no resources can be concealed or held by agents.11 Then, for each

s ∈ Sn and each x = (xi)i∈N ∈ [0, x̄]n, let w (s,x) ≡ f (
P
sixi) denote total

output when agents with skills s supply x. Let W (s) ≡ ∪∈[0,x̄]n {w (s,x)}
be the set of total outputs available under economies with s ∈ Sn and
W ≡ ∪∈SnW (s) be the universal set of total outputs with generic element
w. As noted, the coordinator can observe which element of W is realized as

well as the profile of supplied labor hours x, but he or she cannot observe
the profile of true skills s.12

Second, as mentioned in section 1, we assume throughout the following

analysis that, in the production process, the mechanism coordinator cannot

affect the supply of labor hours. Therefore, the labor supplies are a part of

agents’ actions, rather than a part of resource allocations determined by the

mechanism coordinator. Thus, the action space should be represented by the

product of the space of labor supplies and the space of any other residual

(non-labor) actions. That is, for each i ∈ N , let Ai, for each i ∈ N , denote
the action space of agent i. Then, there is a space of residual (non-labor)
actions Mi such that Ai ≡ Mi × [0, x̄], and ai ≡ (mi, xi) ∈ Ai is an action
of agent i ∈ N , where xi represents agent i’s supplied labor time and mi

her residual actions. For the sake of convenience, let us call mi a message

of agent i.
Given these preliminaries, let a ≡ (m,x) ∈ A ≡ ×i∈NAi denote an

action profile, where m = (mi)i∈N is a profile of messages. For any a ∈ A
and i ∈ N , let a−i be the list (aj)j∈N\{i} ∈ ×j∈N\{i}Aj of elements of the
profile a for all agents except i. Denote the set of such a−i by A−i for each
i ∈ N . Given a list a−i ∈ A−i and an action ai ∈ Ai of agent i, we denote
by (ai,a−i) the profile consisting of these ai and a−i.
A mechanism or game form γ is a pair γ = (A, g), where g : A ×

W → Zn is the outcome function such that for each w ∈ W and each

10See Hong (1995), Suh (1995), Shin and Suh (1997), Tian (1999, 2000), and Yoshihara

(2000).
11Hong (1995) also discusses implementation problems for the case of withholding as a

simple extension of the case of not withholding.
12Even if f , x, and w are observed, the exact location of the true skill profile s cannot

be known before or after the production process. For a detailed discussion on this point,

see Yamada and Yoshihara (2008).
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a = (m,x) ∈ A, g (a;w) = (gi (a;w))i∈N ∈ Zn with (gi1 (a;w))i∈N = x
and

P
gi2 (a;w) ≤ w. The last equation represents the property of non-

authorization in allocating labor hours, in that the allocation of labor hours

among agents, (gi1 (a;w))i∈N , is automatically specified by the actions of all
agents’ labor supplies, x. The last inequality represents the feasibility of the
outcome function. This property implies that given w as a total output, the
aggregate of each agent’s share of output,

P
gi2 (a;w), should not exceed the

total. Denote the universal set of such game forms by Γ.
Does this definition of game forms ensure that the assigned allocation,

g (a;w), is feasible for s ∈ Sn if s is the true skill profile in the current
economy? The answer is yes. Let us show this point. Given a mechanism

γ = (A, g) ∈ Γ, if an action profile is specified as a = (m,x) ∈ A for each
s ∈ Sn, then w (s,x) ∈W (s) is specified as the result of production, and so
is g (a;w (s,x)). As the coordinator can access the correct information about
the total output w = w (s,x), he or she simply distributes such w = w (s,x)
among agents according to the distribution rule described by the outcome

function g. Then, the realized allocation, g (a;w (s,x)), is always feasible
for the true skill profile s ∈ Sn, even though the coordinator is ignorant of
this information.

For each s ∈ Sn and each a−i = (m−i,x−i) ∈ A−i, let

gi (Ai,a−i;W (s,x−i)) ≡ {gi (ai,a−i;w (s, xi,x−i)) | ai = (mi, xi) ∈ Ai} ,
where W (s,x−i) ≡ ∪x0i∈[0,x̄] {w (s, x0i,x−i)} .

Thus, gi (Ai,a−i;W (s,x−i)) is the attainable set of agent i at s ∈ Sn,
when the profile of the other agents’ actions is a−i. As this definition sug-
gests, the attainable set of each agent i for a given a−i may vary when the
profile of skills changes.

Given ui ∈ U and zi ∈ Z, let L (zi, ui) ≡ {z0i ∈ Z | ui (z0i) ≤ ui (zi)} be
the weakly lower contour set for ui at zi. Given γ ∈ Γ, for each economy
e = (u, s) ∈ E , a (non-cooperative) game is given by (N, γ,e). By fixing the
set of players N , we simply denote a game (N, γ,e) by (γ,e). Given a game
(γ,e), a profile a∗ = (m∗,x∗) ∈ A is a (pure-strategy) Nash equilibrium
of (γ,e) if for each i ∈ N , gi

¡
Ai,a

∗
−i;W

¡
s,x∗−i

¢¢ ⊆ L (gi (a∗;w (s,x∗)) , ui).
Let NE (γ,e) denote the set of Nash equilibria of (γ,e). An allocation

z = (xi, yi)i∈N ∈ Zn is a Nash equilibrium allocation of (γ,e) if there
exists a = (m,x) ∈ NE (γ,e) such that g (a;w (s,x)) = z. Let NA (γ,e)
denote the set of Nash equilibrium allocations of (γ,e). A mechanism γ ∈ Γ
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implements ϕ in Nash equilibria if for each e ∈ E , NA (γ,e) = ϕ (e).
An SCC ϕ is implementable if there exists a mechanism γ ∈ Γ that
implements ϕ in Nash equilibria. Note that in this general definition of Nash
implementation, the outcome function always assigns a feasible allocation.

Such a feasibility condition is required in the literature on implementation

theory, in the case of both abstract social choice environments such as Maskin

(1999) and economic environments such as Hurwicz et al. (1995).

3 Implementation

In classical economic environments, like pure exchange economies and pro-

duction economies with known skills, Nash implementation is fully character-

ized by Maskin monotonicity. To see this point, it is sufficient to construct

a canonical-type mechanism that makes each agent announce a profile of

all agents’ utility functions. However, such a property no longer holds for

the case of production economies with unknown skills. In that case, imple-

mentable SCCs should not only have a monotonicity property with respect
to a specific change in the profile of utility functions, but also have some inde-

pendence property with respect to a specific change in production skills. To

examine this point precisely, we define a class of canonical mechanisms and

then examine the characterization of Nash implementation by such mecha-

nisms.13 We also introduce a simple axiom regarding the independence of

skill changes, which together with Maskin monotonicity fully characterizes

Nash implementation.

A mechanism γ = (A, g) ∈ Γ is canonical if for each i ∈ N , Ai =
Mi×[0, x̄] = Un×S×Z×[0, x̄], with the generic element (mi, xi) wheremi =
(ui, sii, z

i
i), and the outcome function g : A×W → Zn is defined as follows:

for each (m,x) ∈ A and each w ∈ R+, g (m,x;w) = z = (xi, yi)i∈N ∈ Zn
satisfying gi1 (m,x;w) = xi for each i ∈ N and

P
gi2 (m,x;w) ≤ w. We

denote by ΓC the class of all canonical mechanisms.
Thus, in a canonical mechanism, each agent’s action consists of announc-

ing a message mi = (u
i, sii, z

i
i) and choosing his or her own supply of labor

13It is also possible in the same class of production economies with unknown skills to

provide a full characterization of Nash implementation without any restriction on available

mechanisms. In this case, the necessary and sufficient condition for Nash implementation

is a variation of Condition M (originally introduced in Moore and Repullo (1990)), which

has a highly complicated form. For this issue, see Yoshihara and Yamada (2017).

9



hours xi. In each agent’s message, he or she announces a profile of utility
functions ui, the information about his or her own skill sii, and his or her own
demand for consumption zii. Such a mechanism is worth calling canonical,

since the message of each agent contains a profile of utility functions as in the

case of the Maskin-type canonical mechanism. Such a mechanism also allows

each agent to not only understate but also overstate the skill announcement.

We are interested in implementation by canonical mechanisms, which is

defined as follows:

Definition 1: An SCC ϕ is canonically implementable if there exists a

canonical mechanism γ = (A, g) ∈ ΓC with Ai =Mi× [0, x̄] = Un×S ×Z ×
[0, x̄] (∀i ∈ N) such that :
(i) γ implements ϕ in Nash equilibria;
(ii) γ is forthright: for each e = (u, s) ∈ E and each z = (xi, yi)i∈N ∈ ϕ (e),
(u, si, zi, xi)i∈N ∈ NE (g,e) and g

¡
(u, si, zi, xi)i∈N ; f (

P
sjxj)

¢
= z.

Denote the class of all such canonical mechanisms satisfying forthrightness

(Definition 1-(ii))14 by Γ∗C.
Forthrightness is a common feature, implicitly assumed in the construc-

tion of mechanisms in most studies of Nash implementation. It requires

that if a feasible allocation z is ϕ-optimal at the present economy e, and
all agents announce truthfully the information about their own skills, their

own consumption bundles received in this allocation, and the true profile

of utility functions, then this message profile should be a Nash equilibrium,

and its equilibrium outcome should be the ϕ-optimal allocation, z. This
requirement is desirable in order to exclude the possibility of information

smuggling.15 Moreover, this requirement can eliminate an unnecessary com-

plication in the process of computing equilibrium strategies.

We show that canonical implementation is fully characterized by two

simple axioms. First, given s = (si)i∈N ∈ Sn and a feasible allocation
z ∈ Z (s), let us define Zi (s,x−i) ≡

n
z0i ∈ Z | f

³P
j 6=i sjxj + six

0
i

´
≥ y0i

o
as the set of feasible consumption bundles for agent i when the other agents

14The forthrightness condition was first introduced by Saijo, Tatamitani, and Yamato

(1996) for implementation problems in pure exchange economies. Lombardi and Yoshi-

hara (2013) then formulated this condition for implementation in abstract social choice

problems.
15For a detailed explanation about information smuggling and about how forthrightness

can exclude this problem, see Lombardi and Yoshihara (2013).
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supply x−i at s ∈ Sn. Moreover, given an economy e = (u, s) and a feasible
allocation z ∈ Z (s), let L (z, ui; s) ≡ L (zi, ui) ∩ Zi (s,x−i). Then, the
standard axiom of Maskin monotonicity can be introduced in production

economies with unknown skills as follows:

Monotonicity (M): For each e = (u, s) , e0 = (u0, s) ∈ E and each z ∈
ϕ (e), if L (z, ui; s) ⊆ L (z, u0i; s) for each i ∈ N , then z ∈ ϕ (u0, s).

This condition is a natural reformulation of Maskin monotonicity [Maskin

(1999)] suited to production economies considered here. Remember that in

pure exchange economies, the monotonic transformation of agent i’s utility
function presumed by Maskin monotonicity takes place within a restricted

consumption space, where the restriction is given by the aggregate endow-

ments of commodities as the upper bound of feasible consumption bundles.16

A corresponding constraint on the consumption space in the case of produc-

tion economies is given by the set of feasible consumption bundles, Zi (s,x−i).
Thus, in production economies, the monotonic transformation of agent i’s
utility function should be represented by L (z, ui; s) ⊆ L (z, u0i; s) for the
definition of Maskin monotonicity.

The second axiom is relevant to the change in individual skills.

Non-manipulability of Unused Skills (NUS): For each e = (u, s) ∈ E
and each z ∈ ϕ (e), for each e0 = (u, s0) ∈ E where s0j = sj for each j ∈ N
with xj > 0, if z ∈ P (e0) \ϕ (e0), then for each i ∈ N with s0i 6= si, there is
no z0i ∈ Z such that (z 0i ,z−i) ∈ ϕ (e0).

That is, suppose that z is a ϕ-optimal allocation at the present economy
e, where an agent i ∈ N supplies no labor, xi = 0. Consider that the

economy changes from the present e = (u, s) to e0 = (u, s0), in that only
agent i’s skill is changed from si to s

0
i (6= si). Moreover, suppose that z is

still efficient, but no longer ϕ-optimal at the new economy e0. Then, NUS
requires that no other ϕ-optimal allocation can be found just by replacing
agent i’s consumption bundle from zi.

Insert Figure 1.

To see this axiom intuitively, let us consider an example of production

economies with two agents. Suppose that N = {1, 2} with s1 = 1 = s2 < s01,
16Moreover, in the abstract social choice environments, the monotone transformation

takes place within the set of feasible alternatives.
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and the production function is given by f (x) = x for any x = 0. Moreover,
consider a feasible allocation (z1, z2) with x1 = 0 < x2, 0 < y1 < y2, and
f (s2x2) = x2 = y1+y2. Finally, let (u1, u2) be represented by the indifference
curves given in Figure 1a. Then, the allocation (z1, z2) is Pareto efficient
for an economy e = ((u1, u2) , (s1, s2)). Suppose that (z1, z2) is ϕ-optimal at
the economy e = ((u1, u2) , (s1, s2)). Moreover, suppose that the economy
changes from e = ((u1, u2) , (s1, s2)) to e

0 = ((u1, u2) , (s01, s2)). Then, though
the allocation (z1, z2) is still Pareto efficient for the new economy e

0, in Figure
1a, let us assume that (z1, z2) is no longer ϕ-optimal. In this case, given
that u1 is strictly quasi-concave in Figure 1a, there cannot exist any other
Pareto efficient allocation with z2 as agent 2’s consumption bundle for e

0.
Therefore, no ϕ-optimal allocation can be found at e0 just by replacing agent
1’s consumption bundle from z1. Thus, the case of Figure 1a describes how
the SCC ϕ satisfies NUS.
In contrast, consider another type of preference profile (u1, u2) given the

same feasible allocation (z1, z2) for the same skill profile (s1, s2) and the
same production function f (x) = x. This preference profile is represented
by the indifference curves given in Figure 1b. As seen in Figure 1b, (z1, z2)
is Pareto efficient for an economy e = ((u1, u2) , (s1, s2)), and so let us as-
sume that (z1, z2) is ϕ-optimal at e. Then, as in the case of Figure 1a,
let us assume that the economy changes from e = ((u1, u2) , (s1, s2)) to
e0 = ((u1, u2) , (s

0
1, s2)), where s1 = 1 = s2 < s01, in Figure 1b. As be-

fore, while the allocation (z1, z2) is still Pareto efficient for the new economy
e0, in Figure 1b, let us assume that (z1, z2) is no longer ϕ-optimal at this
new economy. However, in this case, as u1 is not strictly quasi-concave in
Figure 1b, there is another Pareto efficient allocation (z01, z2) for e

0. Thus,
if this allocation is also ϕ-optimal at e0, then the SCC ϕ does not satisfy
NUS in Figure 1b.
Note thatNUS has an independence property in terms of particular types

of skill changes in a quite weak sense. Indeed, if the allocation (z1, z2) in the
above Figure 1 is ϕ-optimal at e0, then the requirement of NUS is trivially
satisfied by this allocation, which represents the independence feature of this

SCC ϕ with respect to the change of skills specified above.17

We show that an SCC is canonically implementable only if it satisfiesM

17By presuming exactly the same type of skill changes as that of NUS, the independence

of unused skills (IUS) axiom introduced by Yamada and Yoshihara (2007) straighthor-

wardly requires that the ϕ-optimal allocation at the economy e should also be ϕ-optimal
at the new economy e0. NUS is much weaker than IUS.
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and NUS.

Theorem 1: If an efficient SCC ϕ is canonically implementable, then ϕ
satisfies M and NUS.

Proof. Let ϕ be a canonically implementable SCC. Then, there exists
a canonical mechanism γ = (A, g) such that for any e = (ui, si)i∈N ∈ E ,
NA (γ,e) = ϕ (e). If z ∈ ϕ (e) and a = (u, sj, zj, xj)j∈N ∈ NE (γ,e) with
g (a; f (

P
sjxj)) = z, then gi (Ai,a−i;W (s,x−i)) ⊆ L (z, ui; s) for each

i ∈ N , from the definition of the mechanism. Let e0 = (u0i, si)i∈N ∈ E such
that L (z, ui; s) ⊆ L (z, u0i; s) for each i ∈ N . Then, gi (Ai,a−i;W (s,x−i)) ⊆
L (z, u0i; s) for each i ∈ N . Thus, a ∈ NE (γ,e0) holds, which implies z ∈
ϕ (e0). Thus, the necessity of M is verified.

Let us show the necessity of NUS. For each e = (u, s), e0 = (ui, s0i)i∈N ∈
E , and each z ∈ ϕ (e), let sj = s

0
j for each j ∈ N with xj > 0. Moreover, let

z ∈ P (e0) \ϕ (e0). Suppose for some i ∈ N with s0i 6= si and xi = 0, there ex-
ists z0i ∈ Z with x 0i > 0 such that z0 ≡ (z 0i ,z−i) ∈ ϕ (e0). Since z ∈ P (e0) and
(z 0i ,z−i) ∈ ϕ (e0) ⊆ P (e0), ui (zi) = ui (z

0
i) holds. According to the canon-

ical implementability of ϕ, there exist a = (u, sj, zj, xj)j∈N ∈ NE (γ,e)
and a0 =

¡
u, s0j, z

0
j, x

0
j

¢
j∈N ∈ NE (γ,e0) such that g (a;w (s,x)) = z and

g (a0;w (s0,x0)) = z0. From the definition of Nash equilibrium, it follows that
for any j 6= i, gj (Aj,a−j;W (s,x−j)) ⊆ L (zj, uj) and gj

¡
Aj,a

0
−j;W

¡
s0,x0−j

¢¢ ⊆
L (zj, uj); and for i, gi (Ai,a−i;W (s,x−i)) ⊆ L (zi, ui) and gi

¡
Ai,a

0
−i;W

¡
s0,x0−i

¢¢ ⊆
L (z0i, ui). Note that for any j 6= i, aj = (u, sj, zj, xj) =

¡
u, s0j, z

0
j, x

0
j

¢
= a0j

holds. Hence, gi
¡
Ai,a

0
−i;W

¡
s0,x0−i

¢¢
= gi (Ai,a−i;W (s0,x−i)) ⊆ L (z0i, ui) =

L (zi, ui) holds. Moreover, sinceW (s,x−j) =
n
f
³P

k 6=i,j skxk + sjx
∗
j

´
| x∗j ∈ [0, x]

o
=

W
¡
s0, xi,x0−i,j

¢
, gj
¡
Aj, ai,a

0
−i,j;W

¡
s0, xi,x0−i,j

¢¢
= gj (Aj,a−j;W (s,x−j)) ⊆

L (zj, uj) holds for any j 6= i. Therefore,
¡
ai,a

0
−i
¢
= a ∈ NE (γ,e0), and

g
³
a; f

³P
j 6=i s

0
jxj + s

0
ixi
´´
= g

³
a; f

³P
j 6=i sjxj

´´
= g

³
a; f

³P
j 6=i sjxj + sixi

´´
=

z ∈ NA (γ,e0), which is a contradiction from the implementability of ϕ, since
z /∈ ϕ (e0). Thus, ϕ satisfies NUS.

Next, we show that under Assumption 1, an interior and efficient SCC
is canonically implementable if it satisfiesM and NUS.

Theorem 2: Let Assumption 1 hold and n ≥ 3. Then, if an interior and
efficient SCC ϕ satisfies M and NUS, ϕ is canonically implementable.
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Although the proof of Theorem 2 is provided in the Appendix, here we

briefly explain the canonical mechanism constructed in this proof. According

to the definition of canonical mechanisms, the constructed mechanism in the

proof of Theorem 2, say γ∗ = (A∗, g∗) ∈ Γ∗C, also has the action set A
∗
i ≡

Mi×[0, x̄] = Un×S×Z×[0, x̄] for each i ∈ N , and let a =
¡
(ui)i∈N ,σ,z,x

¢ ≡
(ui,σi, zi, xi)i∈N denote the generic action profile in this mechanism. Let an
action profile a =

¡
(ui)i∈N ,σ,z,x

¢ ∈ A∗ with z = (x,y) be called ϕ-
consistent (resp. P -consistent) if for some u ∈ Un, ui = u for each i ∈ N
and (x,y) ∈ ϕ (u,σ) (resp. (x,y) ∈ P (u,σ)).
For each a =

¡
(ui)i∈N ,σ,z,x

¢ ∈ A∗ and each produced output w =
w (s,x) ∈ W , γ∗ generally works as follows: First, g∗ computes the amount
f (
P

σkxk) and compares this with w. Let f (
P

σkxk) = w. Then, if a is ϕ-
consistent, g∗ distributes w in accordance with y, so that g∗ (a;w) = (x,y)
(Rule 1-1-a). If a is not ϕ-consistent but P -consistent, then g∗ punishes
everyone, meaning that g∗ (a;w) = (x,0) (Rule 1-1-b).
Let there be a unique potential deviator, say j, under f (

P
σkxk) = w,

in that ui = u 6= uj for each i 6= j, and (x,y) /∈ ϕ (uj,σ). In this situation,
there may be two cases. First, let j have the property that there exists
z◦j =

¡
x◦j , y

◦
j

¢ ∈ Z such that
¡¡
x◦j ,x−i

¢
,
¡
y◦j ,y−i

¢¢ ∈ ϕ (u,σ). Let us call
such j a potential deviator. In this case, the mechanism would conclude

that j might deviate from
¡
u,σj, z

◦
j , x

◦
j

¢
to the current action (uj,σj, zj, xj).

Thus, j would be punished in such a way that g∗j (a;w) =
¡
xj, y

00
j

¢
is placed

within the lower contour set of
¡
x◦j , y

◦
j

¢
at (u,σ) or the budget sets defined by

the efficiency prices for
¡
z−j,

¡
x◦j , y

◦
j

¢¢
at (u,σ) (Rule 1-2-a). Second, j may

not be identified as a potential deviator in the sense specified in Rule 1-2-a

above, and there may exist
¡
x0j, y

0
j

¢ ∈ Z such that
¡¡
x0j,x−i

¢
,
¡
y0j,y−i

¢¢ ∈
P (uj,σ). In this case, g∗j (a;w) = (xj, w) whenever xj > 0 and yj > w; and
otherwise, g∗j (a;w) = (xj, 0) (Rule 1-2-b).
For any other case under f (

P
σkxk) = w, g

∗ would pick up the agent, say
j, who supplies the maximal labor hours among all agents. Then, it would
assign the total output produced to him or her: g∗j (a;w) = (xj, w) (Rule
1-3).

Second, let f (
P

σkxk) 6= w. In this case, if there exists an agent, say j,
who provides zero labor hours and announces the highest skill level among

all agents, then g∗ would assign the total output produced to him or her:

g∗j (a;w) = (0, w). If there is no such agent, then g
∗ (a;w) = (x,0) (Rule

2).
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Now, let us briefly explain how γ∗ induces the true revelation of skills, at
least for working agents (A), and how it attains desirable allocations (B):

(A) Let s be the true profile of skills and f (
P
skxk) be total produced

output. First, if f (
P

σkxk) 6= f (
P
skxk), then clearly σ 6= s, and at least

one agent, say j ∈ N whose labor supply is positive, has misrepresented his

or her skill, σj 6= sj. According to the above explanation about g∗, such an
agent is punished with g∗j (a; f (

P
skxk)) = (xj, 0) in Rule 2. Then, one

such agent may be better off by shifting to an alternative action in which

either (i) he or she supplies zero labor hours and falsely announces having

the highest skill level among all agents (to induce Rule 2) or (ii) he or she

supplies the maximal labor hours among all agents and truthfully announces

his or her own skill (to induce Rule 1-3). In either case, the agent in

question receives the total output produced. Thus, the action profile with

f (
P

σkxk) 6= f (
P
skxk) cannot correspond to an equilibrium.

Second, suppose f (
P

σkxk) = f (
P
skxk) but σ 6= s. Then, either

at least two agents have misrepresented their skills while supplying pos-

itive amounts of labor or someone, say j, supplies no labor hours while
misrepresenting his or her skill. In the former case, among such misrepre-

senting agents, there exists an agent, say j, who can switch from xj > 0 to
x0j = 0, while announcing a higher number σ

0
j than any other in σ−j to induce

f
³
σ0jx

0
j +

P
i6=j σixi

´
6= f

³P
i6=j sixi

´
(Rule 2). Then, j may be better off

by receiving
³
0, f

³P
i6=j sixi

´´
. Thus, this case cannot correspond to an

equilibrium. In other words, f (
P

σkxk) = f (
P
skxk) and σi = si for any

i ∈ N with xi > 0 must hold in any equilibrium, as confirmed by Lemma A1
in the Appendix.

(B) Let f (
P

σkxk) = f (
P
skxk) and σi = si for any i ∈ N with xi > 0

for the action profile a. It can be shown that unless a is ϕ-consistent, it
cannot be an equilibrium. Therefore, let a be ϕ-consistent inRule 1-1-a and
the corresponding outcome (x,y) is ϕ-optimal for some economy. However,
(x,y) may not be ϕ-optimal for the actual economy, because either (ui)i∈N
is not equal to the true profile of utility functions or there exists a “non-

working” agent j who misrepresents his or her true skill. In the former case,
since ϕ satisfiesM, there exists an agent whose lower contour set of his or her
true utility function at this allocation does not contain the lower contour set

of his or her announced utility function at this allocation. Then, this agent

can change his or her strategy to induceRule 1-2-a and be better off by this
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deviation. In the latter case, since ϕ satisfiesNUS, the misrepresenting “non-
working” agent should not be a potential deviator in the sense specified in

Rule 1-2-a above. Therefore, he or she can change his or her action to induce

Rule 1-2-b, where he or she announces the true skill level and a suitably

changed profile of utility functions u0j in order to find some
¡
x0j, y

0
j

¢ ∈ Z
such that

¡¡
x0j,x−i

¢
,
¡
y0j,y−i

¢¢ ∈ P (u0j, s), and supplies a small positive
amount of labor to make him- or herself better off. In summary, if (x,y) is
an equilibrium allocation, it should be ϕ-optimal for the actual economy.
We are now ready to discuss the full characterization of canonical imple-

mentation.

Corollary 1: Let Assumption 1 hold and n ≥ 3. Then, an interior and
efficient SCC ϕ is canonically implementable if and only if ϕ satisfies M
and NUS.

Although canonical implementation is not equivalent to Nash implemen-

tation, we show in the next section that these are equivalent when the pro-

duction function f is strictly concave, since in such a case NUS is vacuously
satisfied.

4 Applications

It is well known that in production economies with unequal skills, the no-envy

and efficient solution [Foley (1967)] is not well defined. Thus, we consider

a weaker version of the no-envy principle to define equitable SCCs. One
such example is the equal-opportunity-for-budget-set (EOB) principle that

can be formulated as follows. Given s ∈ Sn, z = (x,y) ∈ Zn, and p ∈ ∆, let
B (p, si, zi) ≡ {z0i ∈ Z | pyy0i − pxsix0i ≤ pyyi − pxsixi}. Then:
Set-inclusion Undomination (SIU):18 For each e = (u, s) ∈ E and each
z ∈ ϕ (e), there exists p ∈ ∆P (e,z) such that for each i, j ∈ N , neither
B (p, si, zi) ( B (p, sj, zj) nor B (p, si, zi) ) B (p, sj, zj).

Any SCC satisfying the no-envy principle also satisfies SIU. In addition,
a weaker version of the no-envy and efficient solution, the eu-reference welfare
equivalent budget solution [Fleurbaey and Maniquet (1996)], satisfies SIU.

18Van Parijs (1995) formulated the EOB principle as undominated diversity [Parijs

(1995)], which is stronger than SIU.
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Definition 2: An SCC is the eu-reference welfare equivalent budget solution
ϕu-RWEB if for each e = (u, s) ∈ E , z ∈ ϕu-RWEB (e) implies that z∈ P (e);
and there exists p = (px, py) ∈ ∆P (e,z) for z at e = (u, s) ∈ E such that
for any i, j ∈ N , maxz0∈B(p,si,zi) eu (z0) = maxz0∈B(p,sj ,zj) eu (z0).
Interestingly, most equitable SCCs including ϕu-RWEB are implementable.

To see this, let ϕ be an SCC. This ϕ meets non-discrimination if, for any
(u, s) ∈ E , any z ∈ ϕ (u, s), and any z0 ∈ P (u, s) such that ui (zi) = ui (z0i)
for each i ∈ N , z0 ∈ ϕ (u, s) holds. We have:

Lemma 1: If an efficient SCC satisfies non-discrimination, then it satisfies

NUS.

Proof. Let ϕ be an efficient SCC that does not satisfy NUS. For each

e = (u, s), e0 = (ui, s
0
i)i∈N ∈ E , and each z ∈ ϕ (e), let sj = s0j for each

j ∈ N with xj > 0. Moreover, let z ∈ P (e0) \ϕ (e0). Suppose for some i ∈ N
with s0i 6= si, there exists z0i ∈ Z such that (z 0i ,z−i) ∈ ϕ (e0). Since z ∈ P (e0)
and (z 0i ,z−i) ∈ ϕ (e0) ⊆ P (e0), ui (zi) = ui (z 0i) holds. Thus, since ϕ satisfies
non-discrimination, z ∈ ϕ (e0), which is a contradiction.

Note that an efficient SCC may not satisfy non-discrimination, but could

satisfy NUS. For instance, the proportional solution [Roemer and Silvestre

(1993)] is such an SCC.

Corollary 2: Any interior and efficient SCC satisfying non-discrimination

is canonically implementable if and only if it satisfies M.

Thus, an equitable solution satisfying non-discrimination is canonically im-

plementable if it satisfiesM. There are many such SCCs, including ϕu-RWEB.

Is there an SCC that satisfies M but not NUS? First, let us consider

the case that the production function f is strictly concave. Then:

Lemma 2: Let f be strictly concave. Then, any efficient SCC satisfies

NUS.

Proof. Take any e = (u, s), e0 = (u, s0) ∈ E such that (i) sj = s0j for
each j ∈ N\ {1}, and s1 6= s01. Let z ∈ ϕ (e) with z1 = (0, y1). Suppose z ∈
P (e0) \ϕ (e0). Then, given z−1, there is no other consumption bundle z01 such
that (z01,z−1) ∈ P (e0) holds. This fact is because f is strictly concave, mean-
ing that for any efficiency price p ∈ ∆P (e0,z), z1 is the unique intersection
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point of ∂B (p, s01, z1) and the set
n
(x, y) ∈ Z | y = f

³P
j 6=1 sjxj + s

0
1x
´
−Pj 6=1 yj

o
.

Thus, ϕ satisfies NUS.

Corollary 3: Let f be strictly concave. Then, an interior and efficient SCC
is canonically implementable if and only if it satisfies M.

Second, consider the case that the production function f is not strictly
concave. In this case, we can find an interior and efficient SCC that satisfies
M but not NUS. Given s ∈ Sn, there exists an agent whose skill level is the
lowest within the population at s. Denote such an agent at s by i (s). Then:

Definition 3: An SCC is the maximal workfare solution ϕWF if for each

e = (u, s) ∈ E , z ∈ ϕWF (e) implies that there exists an efficiency price
p ∈ ∆P (e,z) such that z ∈ argmaxz0∈P (e) pyy0i(s)−pxsi(s)x0i(s) and there is no
z00i(s) ∈ Z with x00i(s) > xi(s) and

³
z00i(s),z−i(s)

´
∈ P (e).

To see an implication of this solution, let us assume that f is linear.
Then, let p∗ be the efficiency price of any Pareto-efficient allocation, which
has the property that

p∗x
p∗y
= f(x)

x
holds for any x > 0. Given this p∗, if¡¡

xi(s), yi(s)
¢
,z−i(s)

¢
,
³³
0, y∗i(s) (e)

´
,z−i(s)

´
∈ P (e) with yi(s) = y∗i(s) (e) +

p∗x
p∗y
si(s)xi(s) are such that ui(s)

¡
xi(s), yi(s)

¢
= ui(s)

³
0, y∗i(s) (e)

´
, then ϕWF never

selects
³³
0, y∗i(s) (e)

´
,z−i(s)

´
, since the welfare payment y∗i(s) (e) via ϕWF is

to encourage the lowest skill agent to work. In other words, ϕWF provides

the lowest skilled agents with the maximal welfare payment if and only if

they work as much as possible, which is the reason why we call ϕWF the

workfare solution.

It is easy to see that ϕWF does not satisfy non-discrimination. Moreover:

Lemma 3: Let f be linear. Then, ϕWF is an interior and efficient SCC
that satisfies M, but does not satisfy NUS.

Proof. It is easy to check that ϕWF satisfies M. Let us check that ϕWF

does not satisfy NUS. Take e = (u, s), e0 = (u, s0) ∈ E such that (i)
sj = s0j and s1 < s01 < sj for each j ∈ N\ {1}; (ii) there is z ∈ P (e)
such that z = argmaxz0∈P (e) pyy01 − pxs1x01 and z1 = (0, y1), where py

px
= f(x)

x

holds for any x > 0, by linearity of f . Without loss of generality, let this
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z1 be the unique solution to maximize u1 (z) subject to z ∈ B (p, s1, z1).
Such uniqueness is ensured if s1 is sufficiently small. Furthermore, (iii) let
us assume under e0 that u1 has a quasi-linear form u1 (x, y) ≡ v1 (x) + y
with a property that there is an interval [0, x01] such that for any x ∈ [0, x01],³
x, y1 +

px
py
s01x
´
∈ argmaxz∈B(p,s01,z1) u1 (z).

By definition, z ∈ ϕWF (e). Note z ∈ P (e0). Then, z1 ∈ argmaxz00∈P (e0) pyy001−
pxs

0
1x
00
1. To see this, let us take any z

∗
1 ≡

³
x∗1, y

∗
1 +

px
py
s01x

∗
1

´
∈ argmaxz00∈P (e0) pyy001−

pxs
0
1x
00
1, and suppose y

∗
1 > y1. Let z

∗ ∈ P (e0), whose first component is
z∗1 . Then,

¡
(0, y∗1) ,z

∗
−1
¢ ∈ P (e0) from the quasi-linearity of u1. Moreover,¡

(0, y∗1) ,z
∗
−1
¢
is also Pareto-efficient for e, which implies that z /∈ ϕWF (e),

and thus is a contradiction. Therefore, y∗1 = y1 holds, which implies the
desired result.

From (iii), z01 ≡
³
x01, y1 +

px
py
s01x

0
1

´
∈ argmaxz00∈P (e0) pyy001 − pxs01x001, and

x01 > 0, which implies that z /∈ ϕWF (e0), whereas (z01,z−1 ) ∈ ϕWF (e0).
Thus, ϕWF does not satisfy NUS.

Corollary 4: Let f be linear. Then, ϕWF is not canonically implementable.

Note that ϕWF is Nash-implementable if skills are not private information,

since ϕWF satisfies Maskin monotonicity.

Thus, Corollaries 1, 3, and 4 suggest that within the class of interior and

efficient SCCs, canonical implementation is equivalent to Nash implementa-
tion whenever the production function is strictly concave, but they are not

equivalent when the production function is linear.

5 Concluding Remarks

We characterized Nash implementation in production economies with un-

equal labor skills. In particular, we characterized the class of interior and

efficient SCCs that are Nash-implementable by canonical mechanisms. The
axioms for this full characterization, M and NUS, are simple and easy to

test. The restriction on the available mechanisms is merely subtle, in that

the Nash implementability of interior and efficient SCCs with and without
this restriction are equivalent whenever the production function is strictly

concave.

Note that the results would change if a further restriction were introduced

to the available class of mechanisms. If the only available class were simple
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mechanisms, where each agent is required to announce a price vector rather

than a profile of utility functions, then the second main result presented in

this paper would no longer hold. That is, when utility functions change

Maskin monotonicity must be replaced by a much stronger monotonicity

condition and NUS should also be replaced by a stronger variant. Yamada

and Yoshihara (2007) and Yoshihara and Yamada (2010) developed this line

of research.

6 Appendix

As a preliminary step, we construct two auxiliary functions, which are used

in the proofs of Theorem 2. Given x ∈ [0, x̄]n and i ∈ N , let

π (x−i) ≡
½
maxj 6=i s.t. xj<x̄

xj+x̄

2
if there exists j ∈ N\ {i} such that xj < x̄,

x̄ otherwise.

Let the notation σi ∈ S represent the announced skill of agent i, which is not
necessarily identical to a truthful skill si ∈ S of agent i, and σ = (σi)i∈N ∈ Sn
represent a profile of the announced skills of all agents. Then,

• Let d be such that for each w ∈ R+, each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+,
and each i ∈ N ,
di (σ,x,y, w) =

½
w if xi = π (x−i) < x̄ or xi < π (x−i) = x̄, and yi = 0,
0 otherwise.

• Let d be such that for each w ∈ R+, each (σ,x,y) ∈ Sn× [0, x̄]n×Rn+,
and each i ∈ N ,

di (σ,x,y, w) =

⎧⎪⎨⎪⎩ w
if xi = 0, σi > σj for each j 6= i,
and yi > max

n
f
³P

j 6=i σjx
´
, w
o

0 otherwise.

The function d assigns all of the output produced to only one agent who
provides the maximal positive amount, but less than x̄, of labor time and
reports zero demand for output. The function d assigns all of the output
produced to only one agent who reports the highest skill and does not work.

Let us assume that a game form in Γ requires agents to announce their
own skills. Moreover, assume that this game form specifies the share of

output by using the function d whenever the expected output f (
P

σkxk)
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derived from the deta (σ,x) differs from the realized output w (s,x). Then,
it has an interesting property as the following Lemma A1 shows.

Lemma A1: Let Assumption 1 hold. Let γ = (A, g) ∈ Γ be a game form,
where every agent i is requested to announce his/her own skill, σi, as a
part of a message, and the outcome function g specifies the share of the
output according to the function d whenever f (

P
σixi) 6= w (s,x). Given

(u,s) ∈ E , let a = (m,bx) ∈ ×i∈NAi be a Nash equilibrium of (γ,u,s) such
that f (

P
σkbxk) = w (s, bx). Then, for each i ∈ N with bxi > 0, σi = si.

This proof is presented exactly as Lemma 1 in Yamada and Yoshihara (2007).

Note that the mechanism, γ∗, constructed in the proof of Theorem 2 meet

the premise of Lemma A1.

Proof of Theorem 2.

As a preliminary step, given s ∈ Sn, z = (x,y) ∈ Zn, and p ∈ ∆,
let B (p, si, zi) ≡ {z0i ∈ Z | pyy0i − pxsix0i ≤ pyyi − pxsixi}. Moreover, define
B
¡
∆P (e,z) , si, zi

¢ ≡ ∪p∈∆P (,)B (p, si, zi).

Let pα (xi;x−i, s) ≡ limx0i→xi
f(

j 6=i sjxj+six

0
i)−f(


j 6=i sjxj+sixi)

six0i−sixi si, where α =

‘+’ if x0i > xi; and α =‘−’ if x0i < xi. Given (u,σ,x,y) ∈ Un×Sn×[0, x̄]n×Rn+,
let

N (u,σ,x,y)

≡ ©
i ∈ N | ∃ (x◦i , y◦i ) ∈ Z s.t.

¡
(x◦i ,x−i) ,

¡
y◦i ,y−i

¢¢ ∈ ϕ (u,σ)
ª
.

Let us see how the setN (u,σ,x,y) can function in the mechanism. When
i ∈ N (u,σ,x,y), there are two cases: one is xi = 0, and the other is xi > 0.
Let xi = 0 for i ∈ N (u,σ,x,y). Then, σi may be a false announce-

ment whenever there exists (σ◦i , x
◦
i , y

◦
i ), rather than just (x

◦
i , y

◦
i ), such that¡

(x◦i ,x−i) ,
¡
y◦i ,y−i

¢¢ ∈ ϕ (u, (σ◦i ,σ−i)) holds. If such a profile exists, then
this agent could be a potential deviator in her announcements of not only her

consumption vector but also her skill. Therefore, the mechanism would as-

sign a ‘punishment outcome’ to this agent by taking (σ◦i , x
◦
i , y

◦
i ) as a potential

true message. However, such a potential true message would not necessarily

be uniquely specified, in that there may be multiple potential true messages.

In such a case, we specify how to select one from the set of multiple potential

true messages in the following way. For i ∈ N (u,σ,x,y) with xi = 0, let

21



(σμ
i , x

μ
i , y

μ
i ) be selected by:

(σμ
i , x

μ
i , y

μ
i ) = arg min

{(σ◦i ,x◦i ,y◦i )|((x◦i ,−i),(y◦i ,−i))∈ϕ(,(σ◦i ,−i))}
y◦i−pα (x◦i ;x−i, (σ◦i ,σ−i)) x◦i .

Here, if σμ
i x

μ
i > 0, then y

μ
i −pα (xμi ;x−i, (σμ

i ,σ−i))x
μ
i = y

μ
i −p− (xμi ;x−i, (σμ

i ,σ−i))x
μ
i ,

while if σμ
i x

μ
i = 0, then y

μ
i −pα (xμi ;x−i, (σμ

i ,σ−i))x
μ
i = y

μ
i −p+ (xμi ;x−i, (σμ

i ,σ−i)) x
μ
i =

yμi .
Next, consider xi > 0 for i ∈ N (u,σ,x,y). In this case, σi may be the

ture information as discussed below. Then, as there exists (x◦i , y
◦
i ) such that¡

(x◦i ,x−i) ,
¡
y◦i ,y−i

¢¢ ∈ ϕ (u,σ) by definition of N (u,σ,x,y), such (x◦i , y
◦
i )

is a potential true message for agent i. Then, the mechanism would assign

a ‘punishment outcome’ to this agent by taking (x◦i , y
◦
i ) as a potential true

message. Note that, again there may be multiple potential true messages.

However, in this case, any selection from the set of potential true messages

leaves the agent indifferent, as ui (x
◦
i , y

◦
i ) = ui (x

0◦
i , y

0◦
i ) holds for any different

potential true messages (x◦i , y
◦
i ) and (x

0◦
i , y

0◦
i ), given that ϕ (u,σ) ⊆ P (u,σ).

Therefore, in this case, the specification of a ‘punishment outcome’ is not

difficult, as discussed below.

Now, we are ready to discuss the construction of a mechanism. Denote the

upper boundary of L (zi, ui) by ∂L (zi, ui) ≡ {z0i ∈ L (zi, ui) | ui (z0i) = ui (zi)}.
For the sake of simplifying notations, given (u,σ) ∈ E and ¡z◦j , ¡x−j,y−j¢¢ ∈
ϕ (u,σ), we will sometimes use L

¡
z◦j , uj;σ

¢
instead of the precise statement

L
¡¡
z◦j ,
¡
x−j,y−j

¢¢
, ui;σ

¢
in the following discussion. We define a canonical

mechanism γ∗ = (A∗, g∗) ∈ Γ∗C with A
∗
i ≡Mi× [0, x̄], whereMi ≡ Un×S×Z

with generic element (ui,σi, zi), for each i ∈ N , as follows:
For each a =

¡
(ui)i∈N ,σ,z, bx¢ ≡ (ui,σi, zi, bxi)i∈N ∈ ×i∈N (Mi × [0, x̄]) and

for each output w = w (s, bx) ∈ R+,
Rule 1: if f (

P
σkbxk) = w, and

1-1: there exists u ∈ Un such that ui = u for each i ∈ N , and P yk ≤ w
and

1-1-a): if (bx,y) ∈ ϕ (u,σ), then g∗ (a;w) = (bx,y),
1-1-b): if (bx,y) /∈ ϕ (u,σ), then g∗ (a;w) = (bx,0),
1-2: there exists j ∈ N such that ui = u 6= uj for each i 6= j, (bx,y) /∈
ϕ (uj,σ), and
1-2-a): if j ∈ N (u,σ,bx,y), then g∗i (a;w) = (bxi, 0) for each i 6= j, and

g∗j (a;w) =
½ ¡bxj,min©y00j , wª¢ if yj > f (

P
σkx̄)

(bxj, 0) otherwise,
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where y00j is given by
19¡bxj, y00j ¢ ∈ ½ ∂

£
L
¡
z◦j , uj;σ

¢ ∪B ¡∆P
¡
(u,σ) ,

¡
z◦j ,
¡bx−j,y−j¢¢¢ ,σj, z◦j ¢¤ if bxj > 0©¡

0, yμj − pα
¡
xμj ; bx−j, ¡σμ

j ,σ−j
¢¢
xμj
¢ª

otherwise,

for z◦j = (x
◦
j , y

◦
j ) with

¡¡
x◦j , bx−j¢ , ¡y◦j ,y−j¢¢ ∈ ϕ (u,σ),

1-2-b): if j /∈ N (u,σ,bx,y) and there exists (x◦j , y◦j ) ∈ Z such that¡¡
x◦j , bx−j¢ , ¡y◦j ,y−j¢¢ ∈ P (uj,σ), then g∗i (a;w) = (bxi, 0) for each i 6= j,

and

g∗j (a;w) =
½
(bxj, w) if bxj > 0 and yj > w
(bxj, 0) otherwise,

1-3: in any other case, g∗ (a;w) = (x, d (σ,bx,y, w)),
Rule 2: if f (

P
σkbxk) 6= w, then g∗ (a;w) = (x, d (σ,bx,y, w)).

Lemma A2: Let Assumption 1 hold and n ≥ 3. Then, γ∗ implements any
interior and efficient SCC ϕ satisfying M and NUS in Nash equilibria.

Proof. Let ϕ be an interior and efficient SCC satisfyingM and NUS. Let

e = (u,s) ∈ E .
(1) First, we show that ϕ (e) ⊆ NA (γ∗,e). Let z = (x,y) ∈ ϕ (e). Let
a =

¡
(ui)i∈N , s,z,x

¢ ∈ ×i∈N (Mi × [0, x̄]) be such that ui = u for each

i ∈ N . Then, g∗ (a) = (x,y) from Rule 1-1.20 Suppose j ∈ N deviates to

a0j =
¡
uj0, s0j, z

0
j, x

0
j

¢ ∈Mi × [0, x̄]. From Assumption 1 and the continuity of

the utility functions, if g∗j2
¡
a0j,a−j

¢
= 0, it implies the worst outcome for j.

If a0j induces Rule 2, then x
0
j > 0 and g

∗
j2

¡
a0j,a−j

¢
= 0. If a0j induces Rule

1-3, then either
¡¡
x0j,x−j

¢
,
¡
y0j,y−j

¢¢ ∈ ϕ
¡
uj,
¡
s0j, s−j

¢¢
or
P

i6=j yi + y
0
j >

f
³P

i6=j sixi + sjx
0
j

´
. In either case, y0j > 0 holds, and so g

∗
j2

¡
a0j,a−j

¢
= 0. If

a0j induces Rule 1-2-b, then xj = 0 = x
0
j and s

0
j 6= sj. Thus, g∗j2

¡
a0j,a−j

¢
= 0.

If a0j induces Rule 1-2-a, then either x
0
j > 0 or x

0
j = 0. In the former case,

where s0j = sj holds, Rule 1-2-a implies that

g∗j
¡
a0j,a−j

¢ ∈ ∂
£
L (zj, uj; s) ∪B

¡
∆P (e,z) , sj, zj

¢¤ ⊆ L (zj, uj) ,
since any price vector p ∈ ∆P (e,z) implies B (p, sj, zj) ⊆ L (zj, uj). When
x0j = 0, there exists

¡
σμ
j , x

μ
j , y

μ
j

¢
such that

¡¡
xμj ,x−j

¢
,
¡
yμj ,y−j

¢¢ ∈ ϕ
¡
u,
¡
σμ
j , s−j

¢¢
19Note ∂X denotes the upper boundary of the set X ⊆ R2+.
20From now on, we simply write a value of g∗ as g∗ (a) instead of g∗ (a; f (

P
skxk)),

without loss of generality. Moreover, let g∗j2 (a) be the second component of g
∗
j (a), which

is the share of the output produced to agent j specified by the mechanism under a.

23



and yμj − p−
¡
xμj ;x−j,

¡
σμ
j , s−j

¢¢
xμj ≤ yj − p− (xj;x−j, s)xj or yμj ≤ yj −

p− (xj;x−j, s)xj hold. Let p = (px, py) be the efficiency price which supports
z as a ϕ-optimal allocation at e. Then, yj− px

py
sjxj ≥ yj−p− (xj;x−j, s)xj, so

that g∗j2
¡
a0j,a−j

¢
= yμj −pα

¡
xμj ;x−j,

¡
σμ
j , s−j

¢¢
xμj ≤ yj−pxpy sjxj. This implies

g∗j
¡
a0j,a−j

¢ ∈ L (zj, uj). Finally, if a0j induces Rule 1-1, then g∗j2 ¡a0j,a−j¢ =
y0j ≤ f(

P
i6=j sixi + sjx

0
j)−

P
i6=j
yi. Thus, since z ∈ P (e), uj

¡
x0j, y

0
j

¢ ≤ uj (zj).
In summary, j has no incentive to switch to a0j.

(2) Second, show NA (γ∗,e) ⊆ ϕ (e). Since g∗ is constant with x in z, let
a =

¡
(vi)i∈N ,σ,z,x

¢ ∈ NE (γ∗,e) without loss of generality.
Suppose that a induces Rule 2. Then, eitherN0 (x) ≡ {i ∈ N | xi = 0} =

∅ or N0 (x) 6= ∅. If N0 (x) = ∅, then for each i ∈ N , g∗i2 (a) = 0. Then,
if
P

i6=k σixi =
P

i6=k sixi holds for each k ∈ N , then (n− 1) · (
P

σixi) =
(n− 1)·(P sixi), which contradicts Rule 2. Thus, for some j ∈ N ,

P
i6=j σixi 6=P

i6=j sixi. If j switches to a
0
j =

¡
vj0,σ0j, z

0
j, x

0
j

¢
with σ0j > max {σi | i 6= j},

y0j > max
n
f
³P

k 6=j σkx
´
, w
o
, and x0j = 0, then g∗j2

¡
a0j,a−j

¢
> 0 under

Rule 2.

Let N0 (x) 6= ∅ with #N0 (x) ≥ 2. Then, for each j ∈ N0 (x), if j’s devi-

ating strategy a0j is such that for each i 6= j, σ0j > σi, y
0
j > max

n
f
³P

k 6=j σkx
´
, w
o
,

and x0j = 0, then g
∗
j2

¡
a0j,a−j

¢
= f (

P
skxk) under Rule 2.

Let #N0 (x) = 1 and #N\N0 (x) ≥ 2. Then, there exists j ∈ N\N0 (x)
such that

P
i∈N\(N0()∪{j}) σixi 6=

P
i∈N\(N0()∪{j}) sixi. Thus, j can switch to

a0j such that g
∗
j2

¡
a0j,a−j

¢
> 0 under Rule 2. This can be shown in a similar

way to the case of N0 (x) = ∅.
Suppose that a induces Rules 1-2 or 1-3. Then, there exists j ∈ N such

that g∗j2 (a) = 0. From Lemma A1, σj = sj or xj = 0. Suppose a induces
Rule 1-2. Then, g∗j2 (a) = 0 implies that yj ≤ f (

P
σkx). Then, j can either

deviate to Rule 1-3 with σ0j = sj, x
0
j = π (x−j) < x, and y0j = 0 or get

g∗j2
¡
a0j,a−j

¢
> 0 under Rule 1-2 by y0j > f

³P
i6=j σix̄+ σ0jx̄

´
. Suppose a

induces Rule 1-3. Then, there exists a0j such that g
∗
j2

¡
a0j,a−j

¢
> 0 under

Rule 1-3. In summary, a induces neither Rule 1-2 nor Rule 1-3.
Suppose that a induces Rule 1-1-b. Then, g∗ (a) = (x,0). Then, some

j ∈ N can deviate to induce Rule 1-2, so that g∗j2
¡
a0j,a−j

¢
> 0, which is a

contradiction.
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Thus, a induces Rule 1-1-a, and g∗ (a) = (x,y). From the definition

of Rule 1-1-a, (x,y) ∈ ϕ (u0,σ) where u0 = vi for all i ∈ N . Since a ∈
NE (γ∗,e), σi = si holds for any i ∈ N with xi > 0 according to Lemma
A1. Assume, without loss of generality, that there exists at most one unique

individual j such that xj = 0. Let us consider the following two cases:
Case 1: Let (x,y) ∈ P (u0, s). Then, we can show that (x,y) ∈ ϕ (u0, s).
Suppose that (x,y) /∈ ϕ (u0, s). Then, for the individual j ∈ N with

xj = 0, σj 6= sj. Then, if this j takes the strategy a0j =
¡
uj, sj, z

0
j, x

0
j

¢
with

uj 6= u0, x0j > 0, and y0j > f (
P
skx), then Rule 1-2-b can be applied. This

is because NUS implies j /∈ N (u0, s,x,y) by (x,y) ∈ P (u0, s) \ϕ (u0, s)
and xj = 0. Then, if x0j > 0 is sufficiently small, uj

¡
g∗j
¡
a0j,a−j

¢¢
=

uj
³
x0j, f

³P
i6=j sixi + sjx

0
j

´´
> uj (0, yj) = uj

¡
g∗j (a)

¢
holds by the fact that

(x,y) is an interior allocation, since (x,y) ∈ ϕ (u0,σ). This implies (x,y) /∈
NA (γ∗, (u, s)), which is a contradiction. Thus, (x,y) ∈ ϕ (u0, s). Note that
(x,y) ∈ NA (γ∗, (u, s)) implies that ∂L ((xi, yi) , u

0
i; s) ⊆ L ((xi, yi) , ui) ∩

Zi (s,z−i) for each i ∈ N by Rule 1-2-a. Thus, (x,y) ∈ ϕ (u, s) byM.
Case 2: Let (x,y) /∈ P (u0, s). Since (x,y) ∈ P (u0,σ), σj < sj holds for
the agent j ∈ N with xj = 0. In this case, either j ∈ N (u0, s,x,y) or not.
First, suppose that j /∈ N (u0, s,x,y). Take uj = ¡u00j ,u0−j¢ such that

∂
£
L
¡
(xj, yj) , u

0
j; s
¢ ∪ ¡∪p∈∆P ((0,),(,))B (p, sj, (xj, yj))

¢¤ ⊆ L ¡(xj, yj) , u00j¢ .
Then, (x,y) ∈ P (uj, s) holds. Then, by a0j =

¡
uj, sj, z

∗
j , x

∗
j

¢
with x∗j >

0 and y∗j > f (
P
skx), j can induce Rule 1-2-b, and get g

∗
j2

¡
a0j,a−j

¢
=

f
³P

i6=j sixi + sjx
∗
j

´
. Thus, if x∗j > 0 is sufficiently small, (x,y) /∈ NA (γ∗∗, (u, s)),

which is a contradiction. Thus, j /∈ N (u0, s,x,y) does not hold.
Second, let j ∈ N (u0, s,x,y). Since (x,y) /∈ P (u0, s), there exists

z0j ≡
¡
x0j, y

0
j

¢ À 0 such that
¡
z0j,
¡
x−j,y−j

¢¢ ∈ ϕ (u0, s). In this case,

y0j ≥ yj + px
py
sjx

0
j holds for p ≡ (px, py) ∈ ∆P

¡
(u0, s) ,

¡
z0j,
¡
x−j,y−j

¢¢¢
, since

zj, z
0
j ∈

n
(x, y) ∈ Z | y = f(Pi6=j sixi + sjx)−

P
i6=j yi

o
and f is concave.

Moreover, since z0j /∈ L
¡
(xj, yj) , u

0
j

¢
and z0j ∈ B

¡
p, sj, z

0
j

¢
, B

¡
p, sj, z

0
j

¢
*

L
¡
(xj, yj) , u

0
j; s
¢
holds. Then, since a ∈ NE (γ∗,e), (i) ∂ £L ¡(xj, yj) , u0j; s¢ ∪B ¡p, sj, z0j¢¤

⊆ L ((xj, yj) , uj) and (ii) y0j = yj + px
py
sjx

0
j hold. Indeed, if (i) does not hold,

then j can induce Rule 1-2-a by suitably choosing a0j =
¡
uj, sj, z

∗
j , x

∗
j

¢
with

uj 6= u0, x∗j > 0, and y∗j > f (
P
skx), so that g

∗
j2

¡
a0j,a−j

¢ ≥ yj + px
py
sjx

∗
j and
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g∗j
¡
a0j,a−j

¢
/∈ L ((xj, yj) , uj), which is a contradiction from a ∈ NE (γ∗∗,e).

The same argument also follows if (ii) does not hold.

Consider u00 ≡ ¡uj,u0−j¢. Note that by M, (x,y) ∈ ϕ (u00,σ). Then, by
Rule 1-1-a, for a00 =

¡
(v00i)i∈N ,σ,z,x

¢
with v00i = u00 (∀i ∈ N), g∗ (a00) =

(x,y) and a00 ∈ NE (γ∗,e) hold. Suppose (x,y) /∈ ϕ (u00, s). Then, since
(x,y) ∈ P (u00, s), j can induce Rule 1-2-b by the same reasoning as in
Case 1, so that (x,y) /∈ NA (γ∗,e), which is a contradiction. Thus, (x,y) ∈
ϕ (u00, s). Then, a00 ∈ NE (γ∗,e) and (x,y) ∈ NA (γ∗,e) imply that ∂L ((xi, yi) , u0i; s) ⊆
L ((xi, yi) , ui) holds for each i ∈ N\ {j} by Rule 1-2-a. Thus, (x,y) ∈ ϕ (e)
byM.

Proof of Theorem 2. From Lemma A2, we obtain the desired result.

7 References

Fleurbaey, M. and Maniquet, F. (1996): Fair allocation with unequal pro-

duction skills: The no-envy approach to compensation, Mathematical Social

Sciences 32, pp. 71-93.

Foley, D. (1967): Resource allocation and the public sector, Yale Economic

Essays 7, pp. 45-98.

Hong, L. (1995): Nash implementation in production economies, Economic

Theory 5, pp. 401-417.

Hurwicz, L., Maskin, E., and Postlewaite A. (1995): Feasible Nash implemen-

tation of social choice rules when the designer does not know endowments or

production sets, in Ledyard, J. (ed.), The economics of informational decen-

tralization: Complexity, efficiency, and stability, Essays in Honor of Stanley

Reiter, pp. 367-433. Amsterdam: Kluwer Academic Publishers.

Jackson, M. O. (2001): A crash course in implementation theory, Social

Choice and Welfare 18, pp. 655-708.

Kaplan, T. andWettstein, D. (2000): Surplus sharing with a two-stage mech-

anism, International Economic Review 41, pp. 399-409.

Maskin, E. (1999): Nash equilibrium and welfare optimality, Review of Eco-

nomic Studies 66, pp. 23-38.

26



Lombardi, M. and Yoshihara, N., (2013): A full characterization of Nash

implementation with strategy space reduction, Economic Theory 54, pp.

131-151.

Moore, J. and Repullo, R. (1990): Nash implementation: A full characteri-

zation, Econometrica 58, pp. 1083-1100.

Roemer, J. and Silvestre, J. (1993): The proportional solution for economies

with both private and public ownership, Journal of Economic Theory 59,

pp. 426-444.

Saijo, T., Tatamitani, Y., and Yamato, T. (1996): Toward natural imple-

mentation. International Economic Review 37, pp. 949-980.

Shin, S. and Suh, S.-C. (1997): Double implementation by a simple game

form in the commons problem, Journal of Economic Theory 77, pp. 205-

213.

Suh, S.-C. (1995): A mechanism implementing the proportional solution,

Economic Design 1, pp. 301-317.

Tian, G. (1999): Double implementation in economies with production tech-

nologies unknown to the designer, Economic Theory 13, pp. 689-707.

Tian, G. (2000): Incentive mechanism design for production economies with

both private and public ownerships, Games and Economic Behavior 33, pp.

294-320.

Tian, G. (2009): Implementation in economies with non-convex production

technologies unknown to the designer, Games and Economic Behavior 66,

pp. 526-545.

Tian, G. and Li, Q. (1995): On Nash-implementation in the presence of

withholding, Games and Economic Behavior 9, pp. 222-233.

Van Parijs, P. (1995): Real freedom for all, Oxford: Oxford University Press.

Yamada, A. and Yoshihara, N. (2007): Triple implementation by sharing

mechanisms in production economies with unequal labor skills, International

Journal of Game Theory 36, pp. 85-106.

Yamada, A. and Yoshihara, N. (2008): A mechanism design for a solution to

the tragedy of commons, Review of Economic Design 11, pp. 253-270.

Yoshihara, N. (1999): Natural and double implementation of public owner-

ship solutions in differentiable production economies, Review of Economic

Design 4, pp. 127-151.

27



Yoshihara, N. (2000): A characterization of natural and double implementa-

tion in production economies, Social Choice and Welfare 17, pp. 571-599.

Yoshihara, N. and Yamada, A. (2010): Nash implementation in production

economies with unequal skills: A complete characterization, CCES Discus-

sion Paper Series 38, Hitotsubashi University.

Yoshihara, N. and Yamada, A. (2017): Nash Implementation in Production

Economies with Unequal Skills: Complete Characterizations, mimeo.

28



s1 = 1 < s′1, s2 = 1, (z1, z2) ∈ ϕ(e) where e = ((u1, u2), (s1, s2)).
Moreover, for e′ = ((u1, u2), (s

′
1, s2)), (z1, z2) ∈ P (e′) \ ϕ(e′).

ϕ satisfies NUS because there is no z′1 ∈ Z such that (z′1, z2) ∈ ϕ(e′)

Figure 1a

s1 = 1 < s′1, s2 = 1, (z1, z2) ∈ ϕ(e) where e = ((u1, u2), (s1, s2)).
Moreover, for e′ = ((u1, u2), (s

′
1, s2)), (z1, z2) ∈ P (e′) \ ϕ(e′).

ϕ may not satisfy NUS because (z′1, z2) ∈ P (e′) may be ϕ-optimal at e′

Figure 1b
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