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Abstract

Assumptions of competitive structure are often crucial for marginal cost estima-

tion and counterfactual predictions. This paper introduces tests for price competition

among multi-product firms. The tests are based on the firm’s revealed preference (re-

vealed profit function). In contrast to other approaches based on estimated demand

functions such as conduct parameter estimation, the proposed tests do not require

any instrumental variables, even though the models can accommodate structural error

terms. In this paper, I employ a demand structure introduced by Nocke and Schutz

(2018), the discrete/continuous choice model, which nests the multinomial logit de-

mand and CES demand functions. Any price and quantity data can be rationalized by

price competition under a discrete/continuous choice model and increasing marginal

costs. Adding more assumptions to the demand function, such as logit, CES, or the

co-evolving and log-concave property produces some falsifiable restrictions.

Keywords: revealed preference, multi-product, conduct, discrete/continuous

1 Introduction

In the industrial organization literature, we often assume specific competitive structures such

as price competition or quantity competition. In many cases, competitive structure assump-

tions are crucial for empirical research. For instance, we often back out marginal costs from

first-order conditions based on estimated demand functions and competitive structures. Re-

sults of counterfactual analysis, which often provide the main policy implication in research

∗For helpful discussions and suggestions, I thank Rahul Deb, Brett Hollenbeck, Akina Ikudo, Toshihiro
Matsumura, Moritz Meyer-ter-Vehn, Volker Nocke, Ichiro Obara, Susumu Sato, and seminar participants at
UCLA and University of Tokyo. An earlier version of this paper has been submitted as a 2nd-year-paper.
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with structural models, also depend on the imposed competitive structures. Even though we

can obtain parameter estimates in a structural model that fits the data best, the structural

model itself could possibly not fit the data. That is, the data might not be rationalized by

the model for any possible parameters. Furthermore, the data might not be rationalized by

any realizations of structural error terms. This is because some data points might be outside

the support of the structural model. In this paper, I provide a systematic method to detect

such inconsistency between the data and price competition among single- or multi-product

firms under a certain class of demand functions.

Regarding consumer behavior, Afriat (1967) shows that finite data satisfy GARP if and

only if they are rationalized by utility maximization given a finite set of price vectors. That

is, if the data violate GARP, then they cannot be explained by any (locally non-satiated)

utility functions. Brown and Matzkin (1996) extend this idea to the general equilibrium

framework. Carvajal et al. (2013) apply the idea to Cournot competition, and show that

Cournot rationalizability can be checked by the existence of parameters that satisfy some

inequalities. Carvajal et al. (2014) introduce a few variants of Carvajal et al. (2013): a

test for multi-market-contact Cournot competition and a test for price competition in a

differentiated market. However, they only focus on price competition where each firm pro-

duces a single product. Price competition with multi-product firms is often examined in

the empirical industrial organization literature (e.g., Berry et al. (1995), Goldberg (1995)).

One of the main difficulties in extending Carvajal et al.’s (2014) test to competition among

multi-product firms arises from the substitution effects among the same firm’s products (or

cannibalization effects). We can circumvent such a difficulty by employing an important class

of demand structure, namely the discrete/continuous choice model introduced by Nocke and

Schutz (2018), which nests the multinomial logit demand function and constant elasticity of

substitution (CES) demand function as special cases.

In order to test the competitive structure, we can also estimate the conduct parameter.

Bresnahan (1982) shows that we can identify the conduct parameter in an industry from

a rotation of the demand function over time (see Bresnahan (1989) for its estimation and

applications). Researchers have recently estimated the extent to which firms internalize other

firms’ profits, a measure that is closely related to the conduct parameter (e.g., Miller and

Weinberg (2017) and Sullivan (2016)). Alternatively, if we have data on the cost structure,

we could compare marginal costs backed out from the model with the actual cost data since

different competitive structures yield different first order conditions and, in turn, different

estimates of marginal costs (e.g., Wolfram (1999)). The revealed preference test examined

in this paper provides an alternative approach with advantages and disadvantages. The first

advantage is that the revealed preference test in this paper does not require any IVs while

2



both conduct parameter estimation and the Wolfram (1999) approach require appropriate

IVs. The reason we do not need IVs is that we do not estimate parameters to test the model,

but rather check restrictions that are valid for any parameter values. This is analogous to

Afriat (1967)’s theorem, which characterizes a set of data restrictions satisfied if consumers

maximize their own utility, regardless of the underlying utility function specification. Second,

we only need the market-level price and quantity data, and no other product characteristics,

to implement the test. Due to this parsimonious data requirement, this test could be used

as a pretest/sanity check before detailed estimation.

A disadvantage of the test is that it is a joint test of competitive structure and de-

mand/cost functions. Therefore, rejection of the model might imply other types of competi-

tion under a discrete/continuous demand structure, price competition under other demand

functions, or other types of competition under other demand functions. Second, even though

the discrete/continuous choice model is general enough to include the logit and CES demand

functions as special cases, it still has the independence-to-irrelevant-alternative (IIA) prop-

erty. Therefore, the main theorem in this paper does not hold for the random coefficient

logit model (e.g., Berry et al. (1995)). Another issue is that cost functions are assumed to

be invariant over time in the tested model, even though the constant marginal costs are not

implied since cost functions are assumed to be convex but time-invariant. Therefore, the test

should be implemented for short-panel data, for which the cost structure is not supposed to

change during the time range. In practice, if a researcher has a long panel, then the data

can be divided into many short panels, the test can be implemented for each short data

segment, and the rejection ratio can be reported (e.g., Carvajal et al. (2014)). Incorporating

the observed cost shifter alleviates this issue, as shown in Section 3.

In terms of the power of tests, any data would satisfy the rationalizability condition of

the price competition under the general discrete/continuous demand function. This result

is inconsistent with the findings of Carvajal et al. (2013) and Carvajal et al. (2014). The

key difference is that they consider demand changes due to a common shock for different

firms.1 Naturally, we can obtain falsifiable restrictions by imposing a similar additional

restriction that is compatible with the discrete/continuous demand function. We can also

obtain falsifiable restrictions by restricting the underlying demand function to a sub-class of

discrete/continuous demand structures, which still nests both logit and CES as its special

cases. This also implies that price competition under a logit or CES demand function is

falsifiable.

1Carvajal et al. (2013) consider Cournot competition in the homogenous goods market, where demand
shock is common to all firms. Carvajal et al. (2014) consider multi-market contact Cournot competition and
differentiated price competition. With differentiated price competition, they introduce additional restrictions
that capture the idea of a common demand shock.
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In general, we can check the set of restrictions by evaluating a loss function similar to those

for moment inequality estimations. In principle, therefore, the revealed preference tests in

this article share some computational issues with moment inequality estimations. However,

we can characterize the set of restrictions as a set of linear constraints over parameters by

focusing on the logit demand function and considering a slightly modified data requirement,

which must always be satisfied when researchers estimate logit demand functions. Then, we

can implement the test through standard algorithms for linear constraints.

The remainder of the paper is organized as follows. I introduce the main model and

its special cases in Section 2. I first exemplify a revealed preference test under a logit

demand function and then formalize and generalize the result. In Section 3, I discuss some

extensions of the test with (i) additional demand restrictions discussed in earlier research,

(ii) observed cost shifters, and (iii) the possibility of collusive conduct among firms. I discuss

the algorithms for the tests in Section 4, and provide a summary in Section 5.

2 The model

In this paper, I consider a standard competition framework for a differentiated market, where

each firm produces different products. The products can be similar but not completely the

same. The demand functions are assumed to change over time, potentially because of a

change in consumer tastes or product characteristics. The characteristics might or might

not be observed by the econometrician. I denote J = {1, 2, ..., J} as a set of products

and Qj,t : RJ
+ → R+ as a demand function of product j ∈ J at time t ∈ {1, ..., T} ≡ T .

The demand function is assumed to be in a class of discrete/continuous models, which is

explained later. Firm f ∈ {1, ..., F} produces a set of products Jf ⊂ J s.t. Jf ∩ Jg = φ

for f 6= g and denote Jf = |Jf |. The cost function of product j ∈ J , Cj : R+ → R

, is assumed to be convex and twice continuously differentiable.2 In this section, I focus

on time-invariant cost functions, which serve a similar purpose as time-invariant preference

in Afriat (1967).3 Then, the profit function for firm f at time t is written as πf, t (p) =∑
j∈Jf {Qj,t (p) pj − Cj (Qj,t (p))}.
Let the observed price and quantity be as follows: {p̄, q̄} where x̄ = (x̄′1, ..., x̄

′
T )′ and

x̄t = (x̄1,t, ..., x̄J,t)
′ for x = p, q.4 In the following, I introduce tests of whether a set of data

2Even though the cost functions here are more general than linear cost functions, which are often assumed
in empirical work, the additive separable cost functions are still restrictive in the context of multiple products
because it excludes the economy of scope in the production process. In Section 3, I incorporate non-separable
and convex cost functions. In the main part, I focus on additive separable cost functions for each product,
to permit simpler interpretations.

3In Section 3, I discuss an extension with time-variant and observed cost shifters.
4Throughout the paper, I distinguish observed data on prices and quantities from arbitrary values of price
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{p̄, q̄} can be rationalized by price competition.

Definition 1. A set of data {p̄, q̄} is rationalizable by price competition if there exist demand

and cost functions under which {p̄t, q̄t} is generated as a result of Nash equilibrium of price

competition for any t ∈ T . When {p̄, q̄} can be rationalized by price competition, {p̄, q̄} is

Bertrand-rationalizable.

I primarily utilize first-order conditions of profit functions and cost convexity to derive

testable data restrictions that should be satisfied regardless of the parameter values and

structural error terms. Using the profit function defined above, the first-order condition

w.r.t. pj is written as

0 = Qj,t (p) +
∑
k∈Jf

{pk − C ′k (Qk,t (p))} ∂Qk,t (p)

∂pj
. (1)

2.1 Logit Demand Function

Before proceeding to the main result with a general specification, I demonstrate that some

data cannot be explained by price competition with the logit demand function, which is a

special case of the discrete/continuous model. By using a logit demand function,

Qj,t (p) = Mt
exp (vjt − αpjt)

1 +
∑

k exp (vkt − αpkt)

for some Mt, α ∈ R+ and (vj,t)j∈J ∈ R
J , the first-order condition is rewritten as follows:5

0 = Qj,t (p)−
{
pj − C ′j (Qj,t (p))

}
αQj,t (p) +

∑
k∈Jf

{pk − C ′k (Qk,t (p))} α

Mt

Qk,t (p)Qj,t (p)

By rearranging it, we obtain the following equation:

pj − C ′j (Qj,t (p)) =
1

α
+

1

Mt

∑
k∈Jf

{pk − C ′k (Qk,t (p))}Qk,t (p) . (2)

Example 1. Between-Firm Restriction.

The first example shows that the logit specification generates between-firm restrictions

on data to be rationalized. To emphasize this, I focus on single-product firms 1 and 2, each

and quantity by denoting the data as p̄ and q̄ and the arbitrary values as p and q. This helps clarify proofs
in the Appendix.

5The following argument holds more generally with the time-variant αt, instead of the time-invariant α.
I use the time-invariant α simply because it is used more commonly in the literature.
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of which produces product 1 and 2, respectively. Then, the first-order condition becomes

pj − C ′j (Qj,t (p)) =
1

α
+

1

Mt

{
pj − C ′j (Qj,t (p))

}
Qj,t (p) . (3)

for j = 1, 2. By cancelling 1/α, we obtain the following necessary condition for equilibrium:

p1 − C ′1 (Q1,t (p))

p2 − C ′2 (Q2,t (p))
=
Mt −Q2,t (p)

Mt −Q1,t (p)
. (4)

Suppose that we observe the following data: (p̄j,τ , q̄j,τ )j=1,2, τ=s,t s.t. p̄j, t = p̄j, s = p̄j for

j = 1, 2 and q̄2, t > q̄1, t = q̄1, s > q̄2, s. The RHS for time t and s gives

Mt − q̄2, t

Mt − q̄1, s

< 1 <
Ms − q̄2, s

Ms − q̄1, s

. (5)

However, the LHS for time t and s gives

p̄1 − C ′1 (q̄1, t)

p̄2 − C ′2 (q̄2, t)
≥ p̄1 − C ′1 (q̄1, s)

p̄2 − C ′2 (q̄2, s)
. (6)

Eqs. (5) and (6) show that the data do not satisfy (4). Thus the data cannot be explained by

price competition under a logit demand function. The explanation is as follows. In the logit

specification, a change in price and quantity over time can be explaiend by change in values

of the products, vj,t, or market size, Mt. If vj,t changes, the price pj, t changes in the same

direction as vj, t. If prices do not change over time, as in the example, a change in quantity

can be explained by the market size. However, change in the market size is common to both

products. Therefore, the quantities of both products should move in the same direction.

Example 2. Within-Firm Restriction.

The second example shows that the logit demand function generates within-firm restric-

tions. In eq. (2), the RHS applies in common to the goods produced by the same firm.

Therefore,

pj − C ′j (Qj,t (p)) = pk − C ′k (Qk,t (p)) for any j, k ∈ Jf (7)

must hold at equilibrium. In this paper, I call this property the “common mark-up property.”
6 The model is rejected by the common mark-up property together with the increasing

marginal cost assumption, given the following data: (p̄j,τ , q̄j,τ )j=1,2, τ=s,t s.t. {1, 2} ⊂ Jf ,
p̄1,s > p̄1,t, p̄2,s < p̄2,t, q̄1,s < q̄1,t, and q̄2,s > q̄2,t. That is, the price and quantity of good

6More generally, Nocke and Schutz (2018) call it the “common ι−markup property” under the dis-
crete/continuous choice model.
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Figure 1: Example: Logit Demand Function

1 and those of good 2 move in the opposite direction (see Fig. 1). Suppose that the data

satisfy eq.(7) at time s. If the marginal costs are (weakly) increasing with own quantity,

then p̄1,t − C ′1 (q̄1,t) < p̄1,s − C ′1 (q̄1,s) = p̄2,s − C ′2 (q̄2,s) < p̄2,t − C ′2 (q̄2,t). Therefore, eq.(7)

cannot be satisfied at time t. Thus, these data, (p̄j,τ , q̄j,τ )j=1,2, τ=s,t, cannot be explained by

(a repetition of static) price competition under logit demand functions. This means these

data cannot be explained by any set of parameters, α, mt, and vj,t and non-parametric cost

functions, Cj (·).

Properties of revealed preference tests The above examples highlight some important

features of revealed preference tests for competitive structures.

IVs not needed With the logit specification, one can better understand an underlying

mechanism of the revealed preference test by comparing it with an alternative procedure to

check the competitive structure. A parameter of the demand function, α, is often estimated

from aggregated data (with the use of IVs to address unobserved heterogeneity potentially

correlated with prices), and δ’s are backed out from the first-order condition. Subsequently,

we could check whether the obtained δ’s are reasonable. Alternatively, in the revealed

preference test, a similar procedure is used for any possible α > 0, instead of an estimated

α determined by IVs. Therefore, we do not need IVs with unobserved heterogeneity that is

potentially correlated with price or some other variables.

Interpretation of rejection Note that rejection or acceptance is not probabilistic even

if the model has (only) the structural error term in the logit demand function. When we
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estimate logit demand functions from aggregate data, vj,t is decomposed as vj,t = x′j,tβ + ξj,t

where xj,t is a vector of product j’s observed characteristics, ξj,t represents the unobserved

characteristics, and β is a vector of parameters. In the logit demand estimation, ξj,t is

treated as a structural error term. However, eq.(7) should be satisfied regardless of what

values of ξj,t are realized, as long as firms compete on price under logit demand functions

(recall that I did not impose any assumptions on vj,t). This is because each firm (but not

the econometrician) is assumed to know what (ξj,t)j∈J is realized, as is often assumed in

the empirical IO literature. Therefore, any rejection of the model cannot be attributed to a

peculiar realization of structural error terms.

(No) data restrictions in each assumption In this article, revealed preference tests

are joint tests of demand and cost specifications and the competitive structure. However, it

is worth noting that each of them by itself cannot be rejected by any data, {p̄, q̄}, but can

only be rejected together. Assuming only a logit demand function, for any data (p̄j,t, q̄j,t)j∈J
at each t, we can back out the corresponding (vj,t)j∈J by an inversion of the market share

function as in Berry (1994). Thus, logit demand can fit the data since any changes in data

over time can be captured by changes in (vj,t)j∈J over time. Regarding the assumption

of price competition and cost functions, any data can be rationalized by price competition

under a more general demand function and convex time-invariant cost function, as explained

in Section 2.2. This emphasizes that each assumption in this article is not trivially restrictive,

especially when we have only price and quantity data.

In the following part, I provide a set of inequalities as a systematic method to detect

data inconsistent with price competition, and show that such conditions are sufficient for

rationalization by price competition. Instead of the logit demand function, I employ a class

of demand functions by Nocke and Schutz (2018) that nests the logit demand function and

CES demand function.

2.2 Discrete/Continuous Demand Function

In the following, I employ the discrete/continuous demand function introduced by Nocke

and Schutz (2018), where the demand function for product j is written as

Qj (p) = m
−h′j (pj)

h0 +
∑

k∈I
hk (pk)

,

where hj (·) is decreasing and log-convex for every j, and m is a positive constant. An

important example of this demand function is the logit model hj (pj) = exp (vj − αpj) and
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m = M/α, where vj ∈ R is the value of good j, α > 0 is the coefficient for prices, M > 0

is the size of the market, and h0 is the exponentiated value of the outside option.7 Another

important example is the CES model hj (pj) = ajp
1−σ
j and m = I/ (σ − 1), where I is the

income level of the consumer and σ is the elasticity of substitution (σ > 1).

In this paper, I utilize the fact that we can express the partial derivatives of the dis-

crete/continuous demand function in a simple form:

∂Qk,t (p)

∂pj
= m

−h′k,t (pk)(
h0,t +

∑
k∈I

hk,t (pk)
)2

(
−h′j,t (pj)

)
.

= m−1Qk,t (p) ·Qj,t (p) ∀k 6=j

and

∂Qj,t (p)

∂pj
= mt

−h′′j,t (pj)

h0,t +
∑

k∈I
hk,t (pk)

+mt

(
−h′j,t (pk)

h0,t +
∑

k∈I
hk,t (pk)

)2

= −Qj,t (p)
h′′j,t (pk)

−h′j,t (pk)
+m−1

t (Qj,t (p))2

= −m−1
t Qj,t (p)

{
mt

h′′j,t (pk)

−h′j,t (pk)
−Qj,t (p)

}
.

It is worth noting that −mth
′′
j,t (pk) /h

′
j,t (pk)−Qj,t (p) is positive because of the log-convexity

of hj (·).8

7As discussed by Nocke and Schutz (2018), a discrete/continuous choice model with an outside op-
tion can be normalized to a discrete/continuous choice model without an outside option, Q̃j (p) =

−mh̃′j (pj) /
(∑

k∈I
h̃k (pk)

)
, by letting h̃j (pj) = 1

J h0 + hj (pj). In this paper, I express h0 explicitly in

order to intuitively explain the results in the later parts.
8The log-convexity implies

h′′j (p)

−h′j (p)
>
−h′j (p)

hj (p)

(
>

−h′j (p)

h0 +
∑
hk (p)

)
.
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With the above expression, the FOC w.r.t. pj is written as follows:

0 = 1 +
∑
k∈Jf

{pk − C ′k (Qk,t (p))} ∂Qk,t (p)

∂pj

1

Qj,t (p)

= 1−m−1
t

{
pj − C ′j (Qj,t (p))

}{
mt

h′′j,t (pk)

−h′j,t (pk)
−Qj,t (p)

}
+m−1

t

∑
k∈Jf , k 6=j

{pk − C ′k (Qk,t (p))}Qk,t (p)

= mt −
{
pj − C ′j (Qj,t (p))

}
mt

h′′j,t (pk)

−h′j,t (pk)
+
∑
k∈Jf

{pk − C ′k (Qk,t (p))}Qk,t (p)

Therefore, if the data {p̄, q̄} are generated by price competition with an (unknown) dis-

crete/continuous demand function, there exists αjt, δjt, which corresponds to−h′′j,t (p̄j) /h
′
j,t (p̄j)

and C ′j (q̄j,t), respectively, such that

0 = mt − {p̄j − δj,t}mtαj,t +
∑
k∈Jf

{p̄k − δj,t} q̄k,t. (8)

On the other hand, since δj,t corresponds to C ′j (q̄j,t) and C ′j (·) is assumed to be increasing,

δj,t must be greater than δj,s (s 6= t) if q̄j,t is greater than q̄j,s. This is summarized as an

inequality:

0 ≤ (δj,s − δj,t) (q̄j,s − q̄j,t) . (9)

Combining eq.(8) and eq.(9), we obtain a set of necessary conditions for the data to be

rationalized by the model. Furthermore, the conditions are also sufficient for rationalization.

They are summarized in the following theorem.

Theorem 1. (Discrete/Continuous): The set of observations {p̄, q̄} is Bertrand-rationalizable
under a convex cost function and a discrete/continuous demand function if and only if there

exist real numbers αj,t, δj,t, and mt for any t ∈ T and j ∈ J such that the following hold:

1. αj,t > 0, δj,t > 0, mt > 0;

2. 0 = mt − {p̄j,t − δj,t}mtαj,t +
∑

k∈Jf {p̄k,t − δk,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

The first set of conditions is derived from the underlying specifications of the demand and

cost functions: αj,t > 0 from the assumption that hj is decreasing and log-convex, δj,t > 0

from the increasing cost functions, and mt > 0 from the assumption that the quantity of
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each good is non-negative. The proof of sufficiency consists of two steps. First, given {αj,t}
and {δj.t}, which satisfy the conditions, I construct demand functions

{
Q̄j, t (·)

}
and cost

functions
{
C̄j (·)

}
to satisfy −h̄′′j,t (p̄j) /h̄

′
j,t (p̄j) = αj,t and C̄ ′j (q̄j,t) = δj.t.

9 Then, the data

{p̄, q̄} satisfy the first-order conditions under the reconstructed demand and cost functions.

In the second step, I show that the first-order conditions are a sufficient condition for profit

maximization given the other firms’ prices and the reconstructed demand cost functions. This

result is not trivial since the profit function does not satisfy quasi-concavity. In this paper,

sufficiency is proved by the unique solution of the first-order conditions. The uniqueness is

derived from the unique “common ι-markup” and a mapping from ι-markup to price vectors

as in Nocke and Schutz (2018). See the appendix for the full proof.10

2.3 Special Cases: Logit and CES

For more restrictive specifications, such as logit or CES demand functions, we can easily

derive the necessary condition for data to be rationalized by the models, by simply adding

restrictions to the second condition in the above tests. Sufficiency of the restriction, however,

is less trivial. In the proof of sufficiency in Theorem 1, I reconstruct the demand function as{
Q̄j, t (·)

}
, which still nests the logit demand function, but not CES. Such a reconstruction is

sufficient for Theorem 1 since the reconstructed demand function
{
Q̄j, t (·)

}
is in the class of

demand functions we are interested in. To test a model with the logit demand, we can apply

a similar reconstruction of
{
Q̄j, t (·)

}
and the remaining is proved analogously. In contrast,

such a reconstruction is no longer valid for a model with CES demand. Therefore, a demand

function is reconstructed in a different way, and the sufficiency of the first-order condition

is proved by a slightly different method due to the different construction of the demand

function.

The modified tests mentioned above are articulated in the following propositions (the

specifications and results are summarized in Table 1 in the appendix).

Proposition 1. (Logit) The set of observations {p̄, q̄} is Bertrand-rationalizable under con-

vex cost functions and logit demand functions if and only if there exist real numbers αt,

δj,t, and mt for all t ∈ T and j ∈ J , such that the following hold:

9In the proof of sufficiency, the constructed demand functions
{
Q̄j, t (·)

}
can be different from the actual

demand functions {Qj, t (·)}. For instance, in the proof of Theorem 1, even if the data {p̄, q̄} are actually
generated from CES demand, which is a special case of the discrete/continuous choice model, the recon-
structed

{
Q̄j, t (·)

}
can be a non-CES demand as long as it is another special case of the discrete/continuous

choice model. This point is further discussed in the next subsection.
10Notably, the second condition is generally not linear because of the interaction of δj,t and αj,t, which

contrasts with the finding of Carvajal et al. (2013, 2014). Thus, we cannot use algorithms for linear pro-
gramming. One way to implement the above test is to consider an algorithm similar to moment inequalities.
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1. α > 0, δj,t > 0, mt > 0 ;

2. 0 = mt − {p̄j,t − δj,t}mtαt +
∑

k∈Jf {p̄k,t − δj,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

In the above statement, αt is allowed to vary over time for the sake of generality. We

can easily replace αt with time-invariant α. Such a simplified version is proved analogously

to Proposition 1.

Proposition 2. (CES): The set of observations {p̄, q̄} is Bertrand-rationalizable under con-

vex cost functions and CES demand functions if and only if there exist real numbers σt, δj,t,

and mt for all t ∈ T and j ∈ J , such that the following hold:

1. σt > 1, δj,t > 0, mt > 0 ;

2. 0 = mt − p̄j,t−δj,t
p̄j,t

mtσt +
∑

k∈Jf {p̄k,t − δj,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

As explained earlier, this necessary condition is derived as a special case of (the necessity

part of) Theorem 1. However, the sufficiency is not derived from Theorem 1 since the

reconstructed demand function should be also CES instead of arbitrary discrete/continuous

demand. See the Appendix for the proof.

2.4 Falsifiability

Theorem 1 characterizes the necessary and sufficient condition for the data to be rational-

ized by the model of price competition under discrete/continuous demand functions and

time-invariant convex cost functions. Meanwhile, readers might wonder how restrictive the

conditions are. It turns out that the restriction in Theorem 1 is so loose that any data can

be rationalized by the model with the general discrete/continuous demand functions. This

may be surprising, considering that even the general discrete/continuous choice model sat-

isfies the IIA property. Any changes in price and quantity along a fixed discrete/continuous

demand function must satisfy the IIA property, while demand functions themselves are al-

lowed to change over time with the model in Theorem 1. To clearly understand how any

data satisfy the restrictions, consider the following. For any given δj,t and mt, the remaining

parameter αj,t, which characterizes the demand functions, can be determined only through

the first-order condition w.r.t. pj, t, independently of the first-order condition w.r.t. pk, s,
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where k 6= j or s 6= t. 11 Thus, for any data, we can find corresponding αj,t, δj,t, mt, and

then, the sufficiency implies that any data are rationalized by the model.

Corollary 1. Any data, {p̄, q̄}, are Bertrand-rationalizable under convex cost functions and

discrete/continuous demand functions.

Even though price competition under the general discrete/continuous choice model is

not falsifiable, a model can be falsifiable under a more restrictive demand model such as

the logit demand function as shown in the example. This naturally raises a question: How

general is this falsifiability? In the following, I show that a subclass of discrete/continuous

demand functions that nests both the logit and CES demand is falsifiable. Consider a

discrete/continuous demand function generated by hj,t (·) such that

h′′j,t (pj)

−h′j,t (pj)
=

1

atpj + bt

for some 1 > at ≥ 0 and bt ≥ 0. Now, we can express the logit and CES demand func-

tion by setting at = 0 and setting bt = 0, respectively. I call such a demand function a

discrete/continuous demand function with HARA h since h is characterized as analogous to

a hyperbolic absolute risk averse vNM utility function, which nests CARA and CRRA as

special cases. First, I introduce a modified version of the necessary and sufficient condition

for data to be rationalized by price competition under the modified specification.

Proposition 3. The set of observations {p̄, q̄} is Bertrand-rationalizable under convex cost

functions and discrete/continuous demand functions with HARA h if and only if there exist

real numbers at, bt, δj,t, and mt for all t ∈ T and j ∈ J such that the following hold:

1. 1 > at ≥ 0, bt ≥ 0, δj,t > 0, mt > 0 ;

2. 0 = mt − {p̄j,t − δj,t}mt
1

atpj,t+bt
+
∑

k∈Jf {p̄k,t − δj,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

Note that the modified model is falsifiable, i.e., the model can be rejected given certain

data. By the second condition in the set of restrictions, the data must satisfy

p̄j,t − δj,t
atp̄j,t + bt

=
p̄k,t − δk,t
atp̄k,t + bt

for all j, k ∈ Jf and all t ∈ T . The following example shows how this applies.

11In contrast, under the logit demand, αt is common to all goods so that data restrictions on different
products are linked to each other.
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Example 3. Discrete/Continuous with HARA h

Consider a case in which one firm produces products 1, 2, and 3 and generates the data

{p̄, q̄} such that p̄j,t = p̄j,s ≡ p̄j and q̄j,t = q̄j,s ≡ q̄j for j = 1, 2 and for some t, s ∈ T , and

p̄3,t < p̄3,s and q̄3,t > q̄3,s.

Then, the above equality is rewritten as follows:

p̄1 − δ1

p̄1 + bt/at
=

p̄2 − δ2

p̄2 + bt/at
=

p̄3,t − δ3,t

p̄3,t + bt/at
(10)

and
p̄1 − δ1

p̄1 + bs/as
=

p̄2 − δ2

p̄2 + bs/as
=

p̄3,s − δ3,s

p̄3,s + bs/as
. (11)

Note that the equalities for goods 1 and 2 in eqs. (10) and (11) imply that bt/at = bs/as ≡
b/a. Therefore, all the terms in eqs. (10) and (11) must be the same. Thus, for good 3,

p̄3,t − δ3,t

p̄3,t + b/a
=
p̄3,s − δ3,s

p̄3,s + b/a

must hold. This contradicts p̄3,t < p̄3,s and q̄3,t > q̄3,s.

3 Extensions

This section introduces the following extensions of the revealed preference tests: (i) addi-

tional assumptions regarding the demand function introduced by Carvajal et al. (2014), (ii)

observable cost shifters as discussed in Carvajal et al. (2014), (iii) collusive price competition,

which can also work as an alternative hypothesis for the above tests, (iv) cost functions that

are not additively separable for different products.

3.1 Additional restrictions on demand

Even though the above results provide some testable restrictions, the general model is not

falsifiable. We can obtain a stricter constraint by combining the demand assumption intro-

duced by Carvajal et al. (2014).

In order to define the additional restrictions, I first introduce some notations. I denote

εjt (p) : RJ
+ → R as the relative decrease in the demand of good j at time t in response to

an infinitesimal increase in its price. That is, given the demand function Qjt for good j at

time t ,

εjt (p) = −∂Qj, t (pj, p−j)

∂pj

1

Qjt (p)

14



Figure 2: Example: Rejection by Co-evolving Property

Therefore, the own price elasticity is expressed as pjεjt (p).

We then define the following properties of the demand functions.

Definition: A system of demand functions satisfies the co-evolving property if, for any s

and t∈ T , either

εjs (p) ≥ εjt (p) for all p ∈ RJ
+ and all j ∈ J , or (12)

εjs (p) ≤ εjt (p) for all p ∈ RJ
+ and all j ∈ J (13)

The co-evolving demand property captures the idea of common demand shock in Carvajal et

al. (2013), which is a key component to obtain non-trivial data restrictions in their work. As

seen in the above equations, if the relative slope of demand is higher for firm j in market t,

then so are the relative slopes for other firms k 6= j. That is, we can construct a well-defined

order of demands over T , which is common to all firms according to the relative slopes.

Example 4. Co-evolving Property

The power of the co-evolving property is emphasized by two products produced by dif-

ferent firms. Consider the same prices and quantities as the previous example, but the

two goods are produced by different firms: (p̄j,τ , q̄j,τ )j=1,2, τ=s,t s.t. J1 = {1}, J2 = {2} ,

p̄1,s > p̄1,t, p̄2,s < p̄2,t, q̄1,s < q̄1,t, and q̄2,s > q̄2,t (see Fig. 2).12 Since the two goods are

produced by different firms, eq.(7) is no longer satisfied. However, the co-evolving property

gives us an alternative restriction even under the general discrete/continuous model (instead

12The same logic is applied to multi-product firms simply by ignoring other products.
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of the logit demand function). If they are single-product firms, the first-order condition is

re-written as follows: pj − C ′j (Qj,t (p)) = 1/εj,t (p). Since the marginal costs are increas-

ing, we can obtain an inequality of the profit margins: 1/ε1,s (p̄s) = p̄1,s − C ′1 (Q1,s (p̄s)) >

p̄1,t − C ′1 (Q1,t (p̄t)) = 1/ε1,t (p̄t) for firm 1. Similarly, we also have 1/ε2,s (p̄s) < 1/ε2,t (p̄t).

Therefore, the data imply ε1,s (p̄s) < ε1,t (p̄t) and ε2,s (p̄s) > ε2,t (p̄t). Assuming that εj,s (·) is

non-decreasing in the own price and decreasing in the other’s price, we have ε1,s (p) < ε1,t (p)

but ε2,s (p) > ε2,t (p), which contradicts the co-evolving property. In the following, I de-

scribe εj,t (·) that is non-decreasing in the own price as log-concave, following Carvajal et al.

(2014).13

Before stating the proposition, I demonstrate that the discrete/continuous model can

incorporate the co-evolving property without any conflicts. For example, given multinomial

logit demand, the co-evolving property is satisfied when vjt and vkt move almost in par-

allel over time. Since the logit demand function requires that εjt (p) = α − αQj,t (p) /Mt,

εjt (p) ≤ εjs (p) holds if and only if Qj,t (p) /Mt ≥ Qj,s (p) /Ms holds. The co-evolving prop-

erty under the logit demand function requires that Qj,t (p) /Mt ≥ Qj,s (p) /Ms if and only

if Qk,t (p) /Mt ≥ Qk,s (p) /Ms. This can be satisfied when vjt and vkt move almost in par-

allel over time or a change in Mt is dominant. Log-concavity (of Qj,t (p)) is also satisfied

if −h′′j (pj) /h
′
j (pj) is non-decreasing in pj. In the following proposition, I combine the dis-

crete/continuous choice model and the co-evolving property to derive a set of necessary

conditions for the data to be rationalized by price competition.

Proposition 4. The set of observations {p̄, q̄} is Bertrand rationalizable under convex cost

functions and discrete/continuous demand functions with log-concavity and co-evolving prop-

erty only if there is a permutation of T , denoted by the function σ : T → T , and real numbers

αj,t, δj,t, and mt for all s, t ∈ T and j ∈ J such that the following hold:

1. αj,t > 0, δj,t > 0, mt > 0 ;

2. 0 = mt − {p̄j − δj,t}mtαj,t +
∑

k∈Jf {p̄k − δj,t} q̄k,t;

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t); and

4. if p̄j,t ≤ p̄j,s, p̄−j,t ≥ p̄−j,s and σ (t) < σ (s), then αj,t −m−1
t q̄j,t ≤ αj,s −m−1

s q̄j,s

See the appendix for the proof.

13Carvajal et al. (2014) impose another condition, substitutes condition, that εj,t (·) is decreasing in others’
prices. Under discrete/continuous demand, however, this condition is always satisfied.
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The last condition arises from the co-evolving property and log-concavity, which charac-

terize the common order of εjt (p) over time. Under the discrete/continuous demand model,

εjt (p̄t) =
h′′j,t (p̄j, t)

−h′j,t (p̄j, t)
−m−1

t Qj,t (p̄t) = αj,t −m−1
t q̄j,t .

The permutation, σ, is constructed to provide a common order for εjt (p) (if one exists).

Notably, the co-evolving property is defined by comparing εjt (p) and εjs (p) for all p, but we

only observe values corresponding to εjt (p̄t) and εjs (p̄s), where p̄t and p̄s can take different

values. To address this subtlety, the inequalities “p̄j,t ≤ p̄j,s, p̄−j,t ≥ p̄−j,s” are added to the

last condition.14

3.2 Observed cost shock

One of the important assumptions in the above tests is the time-invariant cost function.

However, in reality, the cost functions shift over time, such as because of a change in input

prices. We can accommodate such a shift in the revealed preference tests if cost shifters are

observed.

Now, assume the following cost functions: Cj (qj, wj) where ∂Cj (qj, wj) /∂qj is increasing

both in qj and wj. Assume also that we observe the cost shifter w in addition to price and

quantity. Denote the observed price, quantity, and cost shifter as follows: {p̄, q̄, w̄} where

x̄ = (x̄′1, ..., x̄
′
T )′ and x̄t = (x̄1,t, ..., x̄J,t)

′ for x = p, q, w. Then, the restriction is modified

as follows.

Remark 1. The set of observations {p̄, q̄, w̄} is Bertrand-rationalizable under marginal cost

functions increasing in own quantity and a cost shifter and discrete/continuous demand

functions only if there exist real numbers αj,t, δj,t, and mt for any t ∈ T and j ∈ J such

that the following hold:

1. αj,t > 0, δj,t > 0, mt > 0;

2. 0 = mt − {p̄j,t − δj,t}mtαj,t +
∑

k∈Jf {p̄k,t − δk,t} q̄k,t; and

3. δj,t′ ≥ δj,t whenever (q̄j,t′ , w̄j,t′) > (q̄j,t, w̄j,t).

In the above claim, I use a partial order for the third condition since, if q̄j,t′ > q̄j,t and

w̄j,t′ < w̄j,t, then we cannot tell which marginal cost is higher. Tests for price competition

under logit, CES, and HARA h, can be also derived analogously.

14For this proposition, I provide only the necessity of the conditions. For the proof of sufficiency, I need
to reconstruct the demand functions satisfying both a discrete/continuous structure and the co-evolving
property from any parameters satisfying conditions 1-4.
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3.3 Collusive price competition

This section discusses revealed preference tests of collusive price competition. Each firm is

assumed to choose their own price while (partially) internalizing the effect on the other firms

as in Miller and Weinberg (2017) and Sullivan (2016). More specifically, firm f maximizes

an objective function

πf, t (p) =
∑
f ′∈F

φf,f ′ ∑
k∈Jf ′

{Qk,t (p) pk − Ck (Qk,t (p))}


given the others’ prices at time t, where φf, f ′ ∈ [0, 1] is firm f ’s weight on firm f ′’s profit.

The first-order condition w.r.t. pj is written as follows:

0 = Qj,t (p) +
∑
f ′∈F

φf,f ′ ∑
k∈Jf ′

{pk − C ′k (Qk,t (p))} ∂Qk,t (p)

∂pj

 .
This first-order condition is simplified using the derivatives of discrete/continuous de-

mand functions and dividing both sides by the market share of product j. Then, the first-

order condition gives the following data restriction:

0 = mt − {p̄j,t − δj,t}mtαj,t +
∑
f ′∈F

φf,f ′
∑
k∈Jf ′

{p̄k,t − δk,t} q̄k,t.

Then, we state a modified version of the revealed preference test as follows:

Remark 2. The set of observations {p̄, q̄} is rationalized by collusive price competition under

convex cost functions and logit demand functions only if there exist real numbers αt, δj,t,

and mt, for all t ∈ T and j ∈ J and φf,f ′ for any f, f ′ ∈ F such that the following hold:

1. αt > 0, δj,t > 0, mt > 0, φf,f ′ ∈ [0, 1] ;

2. 0 = mt − {p̄j,t − δj,t}mtαt +
∑

f ′∈F φf,f ′
∑

k∈Jf ′
{p̄k,t − δk,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

In the above test, the demand is assumed to be a logit demand funcion since any data

are rationalized by the general discrete/continuous model, and the additional parameter

φf,f ′ would weakly loosen the restrictions. In contrast, under a logit demand function, the

common markup property still holds, so the data shown in Example 2 are not rationalized

by the collusive price competition.
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Now, a natural question is to what extent the additional parameter φf,f ′ loosens the

data restrictions. In fact, it loosens the data restrictions less than might be expected. For

example, consider the following variant of the above test. Suppose that there are two firms

a and b, producing products a and b, respectively, and one attempts to test whether a set

of observed data {p̄, q̄} is rationalized by collusive price competition under a logit demand

function. If the firms are competing in prices, the data {p̄, q̄} must satisfy the following

conditions for some αt, δj,t, mt, and φf, f ′ :

0 = mt − {p̄a,t − δa,t}mtαt + {p̄a,t − δa,t} q̄a,t + φa,b {p̄b,t − δb,t} q̄b,t
0 = mt − {p̄b,t − δb,t}mtαt + {p̄b,t − δb,t} q̄b,t + φb,a {p̄a,t − δa,t} q̄a,t

(14)

This implies the following condition:

{p̄a,t − δa,t} {mtαt − (1− φb,a) q̄a,t} = {p̄b,t − δb,t} {mtαt − (1− φa,b) q̄b,t}

⇔ p̄a,t − δa,t
p̄b,t − δb,t

=
mtαt − (1− φa,b) q̄b,t
mtαt − (1− φb,a) q̄a,t

(15)

Note that for any mtαt, δj,t, and φf, f ′ satisfying the above equation, we can determine

the corresponding mt and αt from the original first-order equation, eq. (14). Therefore,

constraints characterized by eq. (15) are equivalent to constraints characterized by eq. (14).

Now, focusing on symmetric φf, f ′ ’s, i.e., φa,b = φb,a ≡ φ, as is often the case, data

restrictions for price competition, φ = 0, and restrictions for collusive price competition,

φ ∈ [0, 1), are equivalent. That is, if there exists a set of
{
{αt}t , {mt}t , {δj,t}j, t , φ

}
for

φ ∈ [0, 1) satisfying eq. (15), we can also find
{
{α̂t}t , {m̂t}t , {δj,t}j, t

}
combined with φ = 0

satisfying eq. (15).

The construction of {α̂t}t and {m̂t}t is as follows. Suppose that
{
{αt}t , {mt}t , {δj,t}j, t , φ

}
satisfies eq. (15):

p̄a,t − δa,t
p̄b,t − δb,t

=
mtαt − (1− φ) q̄b,t
mtαt − (1− φ) q̄a,t

for any t

Now, observe that
{
{m̂αt}t , {δj,t}j, t

}
such that m̂αt = mtαt/ (1− φ) satisfies

p̄a,t − δa,t
p̄b,t − δb,t

=
m̂αt − q̄b,t
m̂αt − q̄a,t

for any t.

Furthermore, we can construct the corresponding m̂t and α̂t as

m̂t ≡ {p̄a,t − δa,t} m̂αt − {p̄a,t − δa,t} q̄a,t
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and α̂t ≡ m̂αt/m̂t. Thus, the data can also be explained by the price competition (φ = 0).

It is also worth noting that asymmetric φf, f ′ ∈ [0, 1] generates strictly loose conditions

versus symmetric φ ∈ [0, 1].

We can test a perfect collusion model as a special case of the above specification, where

φf, f ′ = 1 for all f and f ′. It is mathematically the same model as the baseline model but

with a different definition for a firm. Therefore, we obtain the same result as in Section 2

with a different definition for the firm. To be more specific, I write an immediate corollary of

Theorem 1 (characterization of the test) and Corollary 1 (unfalsifiability) for perfect collusion

under a general discrete/continuous demand model. In the following, I call {p̄, q̄} collusion-

rationalizable if there exist some demand and cost functions under which {p̄, q̄} is generated

as a result of profit maximization of a collusive group of firms.

Corollary 2. The set of observations {p̄, q̄} is collusion-rationalizable under convex cost

functions and discrete/continuous demand functions if and only if there exist real numbers

αj,t, δj,t, and mt for any t ∈ T and j ∈ J such that the following hold:

1. αj,t > 0, δj,t > 0, mt > 0;

2. 0 = mt − {p̄j,t − δj,t}mtαj,t +
∑

f ′∈F
∑

k∈Jf {p̄k,t − δk,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

Furthermore, any data, {p̄, q̄}, are collusion-rationalizable under convex cost functions and

discrete/continuous demand functions.

By restricting a class of demand functions to the logit, we can also obtain a falsifiable

model, which is summarized as an immediate corollary of Proposition 1.

Corollary 3. (Logit) The set of observations {p̄, q̄} is collusion-rationalizable under convex

cost functions and logit demand functions if and only if there exist real numbers αt, δj,t, and

mt for all t ∈ T and j ∈ J such that the following hold:

1. α > 0, δj,t > 0, mt > 0 ;

2. 0 = mt − {p̄j,t − δj,t}mtαt +
∑

k∈Jf

∑
k∈Jf {p̄k,t − δj,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

It is worth noting that a perfect collusion (φ = 1) is strictly more restrictive than a

collusive price competition (φ ∈ (0, 1)) or a price competition φ = 0 because the common

mark-up property applies for all products in the market under the perfect collusion case but

not for(collusive) price competition.
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Example 5. Price Competition v.s. Collusion

For example, suppose that we observe the following data on products 1 and 2, which

are produced by firm 1 and 2, respectively: (p̄j,τ , q̄j,τ )j=1,2, τ=s,t s.t. p̄1, t = p̄1, s = p̄2, t = 1,

p̄2, s = 0.95 , q̄1, t = q̄1, s = 1, q̄2, t = 2, q̄2, s = 3. Then, such data can be rationalized by

a Bertrand competition with convex cost functions such that C ′1 (1) = 0.6, C ′2 (2) = 0.2,

C ′2 (3) = 0.3, and market sizes for each time Mt = 4 and Ms = 11, which correspond to

mt = 0.12, ms = 4, αt = 100/3, and αs = 11/4.15 Note that the example here is not a

special case of Example 1 in Section 2.1 because quantities of product 2 are now always

greater than the quantity of product 1, while an inequality q̄2, t > q̄1, t = q̄1, s > q̄2, s holds

in Example 1. In contrast, the data cannot be rationalized by perfect collusion because the

data contradict the common mark-up property between product 1 and 2, which should hold

under perfect collusion.

3.4 Non-separable cost functions

In this part, I further generalize the model to price competition with convex cost functions

that are not additively separable. Each firm f ∈ {1, ..., F} produces a set of products

Jf ⊂ J s.t. Jf ∩ Jg = φ for f 6= g and denote Jf = |Jf |. At the same time, firm

f ∈ {1, ..., F} faces a cost function, Cf : R
Jf
+ → R , which is assumed to be convex

and twice continuously differentiable. Denote a vector of demand functions for firm f as

Qf,t (p) = [Qj,t (p)]j∈Jf Then, the profit function for firm f at time t becomes πf, t (p) =∑
j∈Jf {Qj,t (p) pj} − Cf (Qf,t (p)) and the first-order condition w.r.t. pj becomes

0 = Qj,t (p) +
∑
k∈Jf

{
pk −

∂C (Qf,t (p))

∂Qk,t

}
∂Qk,t (p)

∂pj
.

The only difference in the first-order condition from that with additively separable cost

functions is that ∂C (Qf,t (p)) /∂Qk,t replaces C ′k (Qk,t (p)) (see eq. (1)). Therefore, we

have to find δj t, which now corresponds to ∂C (Qf,t (p)) /∂Qk,t instead of C ′k (Qk,t (p)). The

transformation of the first-order conditions using the discrete/continuous demand structure

is applied as in Section 2. The convexity of the cost function implies

0 ≤ (∇Cf (qf,t)−∇Cf (qf,s))
′ (qf,t − qf,s) .

15Like eq. (15), the first-order conditions can be reduced to

1− C ′
1 (1)

1− C ′
2 (2)

=
Mt − 2

Mt − 1
and

Ms − 3

Ms − 1
=

1− C ′
1 (1)

0.95− C ′
2 (3)

,

which are easier to verify than the original first-order conditions.
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Combining these conditions, we obtain a test for price competition with non-separable and

convex cost functions.

Theorem 2. (Discrete/Continuous): The set of observations {p̄, q̄} is Bertrand-rationalizable
under a non-separable and convex cost function and a discrete/continuous demand function

if and only if there exist real numbers αj,t, δj,t, and mt for any t ∈ T and j ∈ J such that

the following hold:

1. αj,t > 0, δj,t > 0, mt > 0;

2. 0 = mt − {p̄j,t − δj,t}mtαj,t +
∑

k∈Jf {p̄k,t − δk,t} q̄k,t; and

3. 0 ≤ (δf,t′ − δf,t)′ (q̄f,t′ − q̄f,t).

The only difference in the proof is the reconstruction of the cost functions and the

uniqueness of the equilibrium. First, I construct a preliminary cost function, C̃f (qf ) =

maxt {Vf,t + δf,t · qf} for some Vf, t such that C̃f (q̄f, t) = Vf,t+δf,t · q̄f,t (i.e., ∇C̃f (q̄f, t) = δf,t).

This cost function is convex, but not differentiable everywhere. We can construct a convex

and differentiable cost function by smoothing this. For example, we can use a convolution-

based smoothing technique:

C̄f (qf ) =

∫
C̃f (qf − z)µε (z) dz

where µε (z) is a density function for a uniform distribution around 0 with radius ε > 0. For

a sufficiently small ε > 0, we make the reconstructed cost function convex and differentiable

while keeping ∇C̄f (q̄f, t) = δf,t.

For the uniqueness of the equilibrium, most arguments in the proof hold by replacing

C ′j
(
Q̄j, t (p)

)
with ∂Cf

(
Q̄f, t (p)

)
/∂qj. The remaining task is to prove that the derivative of

[νj (p)]j is negative definite where

νj (p) =

{
pj −

∂Cf
∂qj

(
Q̄f (p)

)}
αj.

The partial derivatives are

∂νj (p)

∂pj
= αj

1−
∑
l∈Jf

∂2Cf
∂ql∂qj

∂Q̄l (p)

∂pj


∂νj (p)

∂pk
= −αj

∑
l∈Jf

∂2Cf
∂ql∂qj

∂Q̄l (p)

∂pk
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Then,

∂ν (p)

∂p′
= Λ

I −

∑

l∈Jf
∂2Cf

∂ql∂q1

∂Q̄l(p)
∂p1

∑
l∈Jf

∂2Cf

∂ql∂q1

∂Q̄l(p)
∂pn

∑
l∈Jf

∂2Cf

∂ql∂qn

∂Q̄l(p)
∂p1

∑
l∈Jf

∂2Cf

∂ql∂qn

∂Q̄l(p)
∂pn




= Λ

{
I − Γ (p)

∂Q (p)

∂p′

}
where

Γ (p) =


∂2Cf

∂q1∂q1
· · · ∂2Cf

∂q1∂qn
...

. . .
...

∂2Cf

∂qn∂q1
· · · ∂2Cf

∂qn∂qn

 .
Note that Γ (p) is positive semi-definite because Cf is convex. Now, the same algebra as

Theorem 1 applies by re-interpreting Γ (p) in the proof of Theorem 1.

4 Implementation

The existence of parameters satisfying the inequality constraints can be checked by minimiz-

ing a loss function over a set of parameters, given the data observed, and checking whether

the minimized value is close to zero. For instance, for an inequality g (θ; p̄, q̄) ≥ 0, we can

construct a loss function (min {0, g (θ; p̄, q̄)})2. Similarly, for a vector of equality constraints

h (θ; p̄, q̄) = 0 and a vector of inequality constraints g (θ; p̄, q̄) ≥ 0, we can construct a loss

function

h (θ; p̄, q̄)T h (θ; p̄, q̄) + g̃ (θ; p̄, q̄)T g̃ (θ; p̄, q̄) ,

where g̃ (θ; p̄, q̄) = [min {0, gi (θ; p̄, q̄)}]i. In general, this minimization faces computational

issues similar to those of estimation with moment inequalities.16 With logit demand and

a slightly modified data requirement, the inequalities are written as linear constraints on

parameters so that we can check the existence of parameters using off-the-shelf tools for

linear constraints. In the following, I assume that the market size
{
M̄t

}
t
, prices {p̄j, t}, and

quantities {q̄j, t} are observable, as is always the case when the logit demand function can

be estimated. The market shares of products at each time {s̄j, t} are also observable since

s̄j, t =
q̄j, t
M̄t

. Then, considering that m = M
α

under logit demand, and with the replacement

of 1
α

= α̃, the data restrictions for price competition under the logit demand function are

characterized by a set of linear constraints on parameters α̃j, t, and δj, t.

16The loss function tends to have a basin at the bottom with kinks around it. Therefore, standard
optimization algorithms do not work well.
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Corollary 4. (Logit) The set of observations
{
p̄, q̄, M̄

}
is Bertrand-rationalizable under

convex cost functions and logit demand functions if and only if there exist real numbers α̃t,

δj,t, and mt for all t ∈ T and j ∈ J such that the following hold:

1. α̃t > 0, δj,t > 0;

2. 0 = M̄tα̃t − {p̄j,t − δj,t}+
∑

k∈Jf {p̄k,t − δj,t} q̄k,t; and

3. 0 ≤ (δj,t′ − δj,t) (q̄j,t′ − q̄j,t).

Proof. The proof is an immediate corollary of Proposition 1.

Thus, we can use standard algorithms for linear constraints to check the constraint.

5 Summary

In this paper, I modify a Bertrand assumption test introduced by Carvajal et al. (2014) to

allow it to be implemented for multi-product firms. To address difficulties caused by can-

nibalization effects, I employ the discrete/continuous demand function introduced by Nocke

and Schutz (2018), which includes the multinomial logit demand function and the CES de-

mand function as special cases. In the main theorem, I provide the necessary and sufficient

condition for data to be rationalized by Bertrand competition among multi-product firms un-

der the discrete/continuous model. The test is implementable without any IVs, and rejection

by it deterministically implies misspecification of the model rather than a peculiar realiza-

tion of structural error terms. Under the general discrete/continuous model, any data would

satisfy the necessary and sufficient condition to be rationalized by price competition, while

some data are not rationalized by price competition under more restrictive demand specifi-

cations such as the logit demand function, CES demand function, or a discrete/continuous

demand function with HARA h. I also discuss additional restrictions on the demand func-

tion discussed in previous research, a test with observed cost shifters, a test for collusive

price competition, and a simple implementation of the logit demand function. The tests can

also be applied for price competition, collusive price competition, and collusion with cost

functions that are not additively separable.
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Appendix

Proof of Theorem 1. For sufficiency, we only need to construct cost and demand functions

for each firm whose profit function is maximized at p̄j,t, q̄j,t.

First, consider a reconstruction of demand function. If the data satisfy the restriction

defined in Theorem 1, we should be able to find αj,t which corresponds to
h′′j,t(p̄j,t)

−h′j,t(p̄j,t)
for any j

and t, where hj,t : R+ → R represents the true data-generating process. For reconstruction

of demand functions, I consider h̄j,t : R+ → R s.t.
h̄′′j,t(pj)

−h̄′j,t(pj)
= αj,t for any pj ∈ R+. Note

that this condition holds for any pj ∈ R+, but not only for p̄j,t. This is analogous to the

construction of utility function in Afriat (1967), where a reconstructed utility function is

locally linear even though the data-generating demand function can be non-linear. Since the

constant
h̄′′j,t(pj)

h̄′j,t(pj)
imply that h̄j,t (pj) can be represented as CARA function with risk averseness

αj,t, we can represent h̄j,t (pj) = exp {vjt − αjtpj} for some vjt. Then, we can construct a

demand function,

Q̄j,t (p) = mt

−h̄′j,t (pj)

h̄0, t +
∑

k h̄k,t (pk)
= mt

αj,texp {vj,t − αj,tpj}
h̄0, t +

∑
k exp {vk,t − αk,tpk}

for some h̄0, t. Here, I denote the reconstructed demand function as Q̄j,t (p) in order to

distinguish it from the demand function in the true data-generating process, Qj,t (p). Now,

vjt can be chosen to satisfy a system of K equations,

mt
αj,texp {vj,t − αj,tp̄j,t}

h̄0, t +
∑

k exp {vk,t − αk,tp̄k,t}
= q̄jt

for all j, similar to an inversion of share functions in logit specifications, discussed in Berry

(1994).

Since (δjt, qjt) satisfies the co-monotone property, we can use monotone cubic interpo-

lation to reconstruct the increasing and continuously differentiable C̄ ′ (·). Then, we can

reconstruct C̄ (q) =
∫ q

0
C̄ ′ (x) dx, which is convex and twice continuously differentiable.17

The final step is to prove that (p̄, q̄) is an equilibrium under the reconstructed demand

and cost functions. Since the reconstructed profit function is continuously differentiable,

first-order conditions must be satisfied at the optimal price. Therefore, we only need to

show that a solution to the first-order conditions for each firm is unique given the other

firms’ strategies. To do so, I use the common ι-markup property examined in Nocke and

Schutz (2018). The following part is closely related to the proofs in Nocke and Schutz (2018)

17Carvajal et al. (2013, 2014) reconstruct the cost function as an upper envelope of linear cost functions,
whose slope is determined by δj,t’s. Instead, in this paper, I use cubic interpolation for differentiability,
which is necessary for the inversion of ι-markup.

26



(especially Lemma F), despite a few differences. First, we do not need to prove the existence

of an equilibrium since we already have data as an equilibrium candidate. Therefore, we only

need to show that those data are an equilibrium. Second, we consider a more general cost

specification than Nocke and Schutz (2018). It complicates the inversion from µf to price

vectors since marginal cost is not a constant, but a function of product quantity. Third, the

reconstructed demand function is a special case of the demand function in Nocke and Schutz

(2018). Therefore, we can circumvent the difficulty arising from a general cost function by

specifying the shape of the demand function.

In the following, I omit the subscript for time t considering that the static NE is repeated

and the following logic is applied for each t. Then, I denote the reconstructed demand

function as Q̄j (p) = m
−h̄′j(pj)

h̄0+
∑

k h̄k(pk)
= m

αjexp{vj−αjpj}
h̄0+

∑
k exp{vk−αkpk}

and h̄′j (pj) = −αjexp {vj − αjpj},

h̄′′j (pj) = α2
jexp {vj − αjpj}, and

h̄′′j (pj)

−h̄′j(pj)
= αj. Since we now consider a maximization

problem of a specific firm given the other firm’s strategy, let us denote h̄0+
∑

k/∈Jf h̄k (pk) = H0

and Jf = {1, ..., n} without loss of generality. By the FOC, we have the following for any

j ∈ Jf

{
pj − C̄ ′j

(
Q̄j (p)

)} h̄′′j (pj)

−h̄′j (pj)
= 1 +m−1

∑
k∈Jf

{
pk − C̄ ′k

(
Q̄k (p)

)}
Q̄k (p) (16)

Since the RHS is same for any j ∈ Jf , the solution of a system of equations defined by (16)

for any j ∈ Jf satisfies

νj (p) ≡
{
pj − C̄ ′j

(
Q̄j (p)

)}
αj = µf

for any j ∈ Jf . Let ν (p) = [ν1 (p) , ..., νn (p)]′. Then, p = ν−1
(
1µf

)
≡ r

(
µf
)
≡[

r1

(
µf
)
, ..., rn

(
µf
)]′

at the solution of (16). Then, we can rewrite the condition (16) as

µf = 1 +m−1
∑
k∈Jf

{
rk
(
µf
)
− C̄ ′k

(
Q̄k

(
r
(
µf
)))}

Q̄k

(
r
(
µf
))

= 1 +m−1
∑
k∈Jf

{
rk
(
µf
)
− C̄ ′k

(
Q̄k

(
r
(
µf
)))}

αk︸ ︷︷ ︸
µf

1

αk
Q̄k

(
r
(
µf
))

= 1 +m−1µf
∑
k∈Jf

1

αk
Q̄k

(
r
(
µf
))

⇔ 0 = 1 + µf

m−1
∑
k∈Jf

1

αk
Q̄k

(
r
(
µf
))
− 1

 ≡ ψ
(
µf
)

Then, the uniqueness of the solution of the first-order condition is proved by the strict

monotonicity of ψ
(
µf
)
. Again, the existence of a solution can be omitted since the data
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satisfy the first-order condition by the construction of
(
Q̄j (·) , C̄j (·)

)
j∈Jf

. By taking a

derivative w.r.t. µf

ψ′
(
µf
)

=
∑
k∈Jf

exp
{
vk − αkrk

(
µf
)}

H0 +
∑

l exp {vl − αlrl (µf )}
− 1︸ ︷︷ ︸

<0

+µfm−1
∑
k∈Jf

1

αk

∂Q̄k (p)

∂p
|p=r(µf)︸ ︷︷ ︸

1×n

r′
(
µf
)︸ ︷︷ ︸

n×1︸ ︷︷ ︸
≡A

It is sufficient to show that A ≤ 0.

A = µfm−1

[
1

α1

, ...,
1

αn

]
︸ ︷︷ ︸

1×n

∂Q̄ (p)

∂p′
|p=r(µf)︸ ︷︷ ︸

n×n

∂ν−1 (m)

∂m′
|m=1µf︸ ︷︷ ︸

n×n

1︸︷︷︸
n×1

= µfm−1 1′︸︷︷︸
1×n

Λ−1 ∂Q̄ (p)

∂p′
|p=r(µf)︸ ︷︷ ︸

n×n

∂ν−1 (m)

∂m′
|m=1µf︸ ︷︷ ︸

n×n︸ ︷︷ ︸
≡B

1︸︷︷︸
n×1

where Λ =


α1 · · · 0
...

. . .
...

0 · · · αn

. Since µf > 0 and m > 0, we only need to show that B is

negative semi-definite.

To examine the derivatives of ν−1 (m), we first consider the derivative of ν. Recall that

νj (p) ≡
{
pj − C ′j

(
Q̄j (p)

)}
αj. Then, the partial derivatives are

∂νk (p)

∂pk
= αk

(
1− C ′′k

(
Q̄k (p)

) ∂Q̄k (p)

∂pk

)
∂νk (p)

∂pj
= −αkC ′′k

(
Q̄k (p)

) ∂Q̄k (p)

∂pj

Then,

∂ν (p)

∂p′
= Λ

I −
 C ′′1

(
Q̄1 (p)

) ∂Q̄1(p)
∂p1

C ′′1
(
Q̄1 (p)

) ∂Q̄1(p)
∂pn

C ′′n
(
Q̄n (p)

) ∂Q̄n(p)
∂p1

C ′′n (Qn (p)) ∂Q̄n(p)
∂pn




= Λ

{
I − Γ (p)

∂Q̄ (p)

∂p′

}
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where Γ (p) =


C ′′1
(
Q̄1 (p)

)
· · · 0

...
. . .

...

0 · · · C ′′n
(
Q̄n (p)

)
. Then,

B = Λ−1∂Q̄ (p)

∂p′
|p=p̄

∂r (m)

∂m′
|m=1µf

= Λ−1∂Q̄ (p)

∂p′
|p=p̄

[
∂ν (p)

∂p′
|p=p̄

]−1

= Λ−1∂Q̄ (p)

∂p′
|p=p̄

[
Λ

{
I − Γ (p)

∂Q̄ (p)

∂p′

}]−1

= Λ−1

((
∂Q̄ (p)

∂p′
|p=p̄

)−1
)−1{

I − Γ (p)
∂Q̄ (p)

∂p′

}−1

Λ−1

= Λ−1

({
I − Γ (p)

∂Q̄ (p)

∂p′

}(
∂Q̄ (p)

∂p′
|p=p̄

)−1
)−1

Λ−1

= Λ−1

((
∂Q̄ (p)

∂p′
|p=p̄

)−1

− Γ (p)

)−1

Λ−1

= −Λ−1

(
Γ (p)−

(
∂Q̄ (p)

∂p′
|p=p̄

)−1
)−1

Λ−1

Now, B is negative definite if ∂Q̄(p)
∂p′

is negative definite;

∂Q̄ (p)

∂p′
=


−m−1Q̄1 (p)

{
α1m− Q̄1 (p)

}
m−1Q̄1 (p)Q2 (p) · · · m−1Q̄1 (p)Qn (p)

m−1Q̄1 (p) Q̄2 (p) −m−1Q̄2 (p)
{
α2m− Q̄2 (p)

}
m−1Q̄2 (p) Q̄n (p)

...
. . .

...

m−1Q̄1 (p) Q̄n (p) m−1Q̄2 (p) Q̄n (p) · · · −m−1Q̄n (p)
{
αnm− Q̄n (p)

}



= m−1


−Q̄1 (p)

{
α1m− Q̄1 (p)

}
Q̄1 (p) Q̄2 (p) · · · Q̄1 (p) Q̄n (p)

Q̄1 (p) Q̄2 (p) −Q̄2 (p)
{
α2m− Q̄2 (p)

}
Q̄2 (p) Q̄n (p)

...
. . .

...

Q̄1 (p) Q̄n (p) Q̄2 (p) Q̄n (p) · · · −Q̄n (p)
{
αnm− Q̄n (p)

}



= m−1



Q̄1 (p) Q̄1 (p) · · · Q̄1 (p) Q̄n (p)

...
. . .

...

Q̄1 (p) Q̄n (p) · · · Q̄n (p) Q̄n (p)

−m

α1Q̄1 (p) · · · 0

...
. . .

...

0 · · · αnQ̄n (p)




29



Then,

x′
∂Q̄ (p)

∂p′
x = m−1

x′Q̄ (p) Q̄ (p)′ x−mx′


α1Q̄1 (p) · · · 0

...
. . .

...

0 · · · αnQ̄n (p)

x


= m−1


(∑

i

xiQ̄i

)2

−m
∑
i

x2
iαiQ̄i


= m−1

(∑
i

xiQ̄i

)2

−m−1
∑
i

x2
i Q̄

2
i +m−1

∑
i

x2
i Q̄

2
i −

∑
i

x2
iαiQ̄i

= −m−1

∑
i

x2
i Q̄

2
i −

(∑
i

xiQ̄i

)2
︸ ︷︷ ︸

>0

−m−1

∑
i

x2
i Q̄i

(
mαi − Q̄i

)︸ ︷︷ ︸
>0

 < 0

Thus, ∂Q(p)
∂p′

is negative definite. Therefore, B is negative definite, so that ψ′
(
µf
)
< 0.

Proof of Proposition 2 and 3:

In this part, I show a reconstruction of demand functions and prove the uniqueness of the

solution of the first-order condition. The notations in the following are for Proposition 3

(1 > at > 0 and b ≥ 0), but the same proof can be applied for Proposition 2 by setting

bt = 0. When at = 0, the proof is analogous to Theorem 1.

Suppose that we have 1 > at > 0 and b ≥ 0. Then, we can reconstruct h̄j, t (pj) =

vj, t

(
pj + bt

at

)1− 1
at for some vj, t. Subsequently, the demand function is reconstructed as

Q̄j, t (p) = mt

(
1
at
− 1
)
vj, t

(
pj + bt

at

)− 1
at

∑
k∈J vk, t

(
pk + bt

at

)1− 1
at

.

Note that there exist vj, t’s satisfying

q̄j, t = mt

(
1
at
− 1
)
vj, t

(
p̄j + bt

at

)− 1
at

∑
k∈J vk, t

(
p̄k + bt

at

)1− 1
at

for any j ∈ J . It remains to prove the uniqueness of the solution to the first-order conditions.

In the following, I omit time-index, t, for simplicity. Now, similar to Theorem 1, by the first-
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order condition, we have the following for any j ∈ Jf

{
pj − C̄ ′j

(
Q̄j (p)

)} 1

apj + b
= 1 +m−1

∑
k∈Jf

{
pk − C̄ ′k

(
Q̄k (p)

)}
Q̄k (p)︸ ︷︷ ︸

µf

(17)

The RHS is rewritten as

1 +m−1
∑
k∈Jf

{
pk − C̄ ′k

(
Q̄k (p)

)} 1

apj + b︸ ︷︷ ︸
µf

am

(
1
a
− 1
)
vk
(
pk + b

a

)1− 1
a∑

l∈J vl, t
(
pl + b

a

)1− 1
a

Then, eq. (17) is decomposed into the following system of equations:pj − C̄ ′j
mt

(
1
a
− 1
)
vj
(
pj + b

a

)− 1
a

H0 +Hf

 1

apj + b
− µf = 0 ∀j ∈ Jf (18)

µf = 1 + µf (1− a)
Hf

H0 +Hf

(19)

Hf =
∑
k∈Jf

vk

(
pk +

b

a

)1− 1
a

(20)

where H0 =
∑

k/∈Jf h̄k (pk). By eq. (19),

µf = 1 + µf (1− a)
Hf

H0 +Hf

⇔ µf =
1

1− (1− a)
Hf

H0+Hf

=
H0 +Hf

H0 +Hf − (1− a)Hf

=
H0 +Hf

H0 + aHf

≡ µf (Hf )

Then, by (18),

νj (pj, Hj) ≡

pj − C̄ ′j
mt

(
1
a
− 1
)
vj
(
pj + b

a

)− 1
a

H0 +Hf

 1

apj + b
− H0 +Hf

H0 + aHf

= 0 ∀j ∈ Jf
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Note that

∂µf (Hf )

∂Hf

=
1

H0 + aHf

− H0 +Hf

(H0 + aHf )
2a

=
H0 + aHf − a (H0 +Hf )

(H0 + aHf )
2

=
(1− a)H0

(H0 + aHf )
2 > 0

Note that pj is uniquely determined by eq. (18) given Hf . The solution is denoted as pj (Hf ).

Then, the aggregator in eq. (20) is written as

Hf =
∑
k∈Jf

vk, t

(
pk (Hf ) +

bt
at

)1− 1
at

(21)

Now, we prove that eq. (21) has a unique solution. It is sufficient to show that the derivative

of the RHS of (21) is always less than 1, i.e.,

∂RHS

∂Hf

=

{
1− 1

at

}∑
k∈Jf

vk, t

(
pk (Hf ) +

bt
at

)− 1
at
[
−∂νj (pj, Hf )

∂Hf

/
∂νj (pj, Hf )

∂pj

]
< 1

Observe that

∂νj (pj, Hf )

∂pj
=

b

(apj + b)2 +
a

(apj + b)2 C̄
′
j (Qj) +

1

(apj + b)2E

where E = C̄ ′′j

(
m

( 1
a
−1)vj(pj+ b

a)
− 1

a

H0+Hf

)
m

( 1
a
−1)vj(pj+ b

a)
− 1

a

H0+Hf
> 0 and

∂νj (pj, Hf )

∂Hf

=
1

(apj + b) (H0 +Hf )
E − (1− a) (H0)

(H0 + aHf )
2
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Then, the RHS of eq. (21) becomes

∂RHS

∂Hf

=

{
1− 1

a

}∑
k∈Jf

vk

(
pk +

b

a

)− 1
a
[
−∂νj (pj, Hf )

∂Hf

/
∂νj (pj, Hf )

∂pj

]

= {1− a}︸ ︷︷ ︸
∈(0,1)

∑
k∈Jf

vk
(
pk + b

a

)1− 1
a

H0 +Hf

E −
(1−a)H0(H0+Hf)(apj+b)

(H0+aHf)
2

E + b+ aC̄ ′j (Qj)


︸ ︷︷ ︸

<1︸ ︷︷ ︸
<1

< 1

Thus, the observed prices of firm f ’s products are the unique solution of the set of the firm

f ’s first-order conditions, given the other’s prices.

Proof of Proposition 4:

We need to derive the final condition in this proposition.

By the co-evolving property, we can find a permutation such that σ (t) < σ (s) implies

εj,t (p) ≤ εj,s (p) for all j ∈ J and for all p. If p̄i,t ≤ p̄i,s, p̄−i,t ≥ p̄−i,s and σ (t) < σ (s),

then αj,t − m−1
t q̄j,t = εj,t (p̄jt, p̄−jt) ≤ εj,t (p̄js, p̄−jt) ≤ εj,t (p̄js, p̄−js) ≤ εj,s (p̄js, p̄−js) =

αj,s −m−1
s q̄j,s. Thus, αj,t −m−1

t q̄j,t ≤ αj,s −m−1
s q̄j,s �
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