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1. Introduction 

After the Great East Japan Earthquake in 2011, Hamamatsu, a city in the central region of 

Japan that did not suffer from the earthquake, but expects a large one within a few decades, 

started building anti-tsunami embankments on more than 17 km based on voluntary public 

contributions. One company, Ichijo Housing Co., donated JPY 30 billion, and households and 

other companies, more than 3,000 in total, donated JPY 1 billion. To date, the total donations 

will cover the cost of the project. 

Oxfam reported that eight super-rich men hold the same amount of wealth as the poorest 

half of the world’s population in January 20171, and five out of eight are members of the Giving 

Pledge where they committed to contribute a majority of their wealth to philanthropic causes.2  

These are examples of the private provision of a public good, with a sizable literature 

body developed over the past few decades. The basic framework is that each player chooses 

between consumption of a private good and contribution to it, which is called the voluntary 

contribution mechanism (VCM). In this respect, researchers such as Bergstrom, Blume, and Varian 

(1986), Bernheim (1986), Cornes and Sandler (1996), and Kotchen (2006) analyze the nature of 

Nash equilibria, such as the existence, uniqueness, and neutrality. However, the stability of the 

VCM has not been investigated extensively. 

If utility functions are linear, then each player has a dominant strategy with no 

contribution, making the system stable. However, if they are nonlinear and all players have the 

same quasilinear utility function and endowment, the system is not asymptotically stable under 

simultaneous difference equations, and is structurally unstable under simultaneous differential 

equations as Saijo (2014) shows. That is, the system of the VCM is intrinsically unstable and has 

a free-riding issue as well. 

Since assuming that every player has the same utility function and the endowment is a 

stringent condition, this paper considers them different. As such, we use quasilinear utility 

functions that are linear with respect to player i’s private good consumption ix  and nonlinear 

with respect to a public good y, that is, ( , ) ( ).i i i iu x y x t y   The rationale behind this formulation 

is that the private good represents money and, hence, its marginal utility is constant, but the 

marginal utility of the public good decreases so that the ( )it y  part is nonlinear. Furthermore, 

players may have different endowments.  

Experimental tests such as Chen and Plott (1996), Chen and Tang (1998), Chen and 

Gazzale (2004) and Healy (2006) found that players basically use myopic learning dynamics 

such as best-responses to a recent history of actions. Following them, we will use best response 

                                                           
1 See https://www.oxfamamerica.org/explore/research-publications/an-economy-for-the-99- 
percent/ 
2 See https://givingpledge.org/#enter 
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dynamics as the simplest dynamics. If a utility function is quasilinear, the best response 

function is linear and its slope is -1. The difference in players can be identified by the intercept 

when no other players contribute, ai, and let the player who has the maximum value of ai be 

player 1. Subsequently, the unique Nash equilibrium is that player 1 contributes a1 and every 

other player contributes nothing. Furthermore, a necessary and sufficient condition for global 

stability of the simultaneous system of difference equations is 1 2

n

jj
a a


  , as long as i iw a , 

where iw  is the endowment of player i. That is, the system is globally stable if there is an 

outstanding player who can contribute significantly compared with other players3. It appears 

that the anti-tsunami embankment case of Hamamatsu city and the pledgers of the Giving 

Pledge correspond to this case.  

Even if 1 2
,

n

jj
a a


   the system is locally stable around the Nash equilibrium, but if the 

number of players increases, the area of initial points that converge to the Nash equilibrium 

decreases rapidly. That is, the system is intrinsically unstable as long as either 1 2

n

jj
a a


   is 

satisfied, namely players are all alike, or the number of players is large.  

The remainder of this paper is organized as follows. Section 2 provides a necessary and 

sufficient condition for global stability of the VCM, and section 3 analyzes instability and the 

number of players using an example. Section 4 studies the Cobb-Douglas utility functions, and 

section 5 describes further research scope. 

 

2. Global stability of the VCM 

Let x be a private good and y be a public good. The production function of the public 

good is y = f(x) = x. That is, for example, one hour of labor input produces one millimeter of 

anti-tsunami embankment. Player i has endowment wi and must decide to divide wi into i’s own 

consumption of the private good ix  and contribution is  to the public good. That is, 
1

n

jy s
where 2.n   This system is called the VCM. We assume that each player has a quasilinear 

utility function ( , ) ( ).i i i iu x y x t y   Consequently, player i faces the following problem.  

 

 ( , ) subject to i i i i i i iMax u x s s w x s   , 
 

where .i jj i
s s 

   Let ( , ) ( , ) ( ).i i i i i i i i i i i i iu w s s s v s s w s t s s          A list of contributions 

1ˆ ˆ ˆ( , ..., )ns s s  is a Nash equilibrium if for all i ˆ ˆ ˆ( , ) ( , ) for all [0, ].i i i i i i i iv s s v s s s w    The best 

response function is defined as 

 

                                                           
3 Olson (1965) pointed out that "(i)n smaller groups marked by considerable degrees of inequality - that is, 
in groups of members of unequal "size" or extent of interest in the collective good - there is the greatest 
likelihood that a collective good will be provided" (p.34) from the viewpoint of collective good provision 
rather than from the stability viewpoint. 



4 
 

( )i ir s  .  arg max ( , )| [0, ] .
i

i i i i i
s

v s s s w  4
 

 

As such, the best response functions are linear. In order to show this property, consider the first 

order condition for the maximization problem, i.e., / 1 / 0.i i iv s t y       Then, totally 

differentiating both sides of the condition, we have the slope of the best response function since  

   i i i it y s t y s         :  
 

 
 

1.i ii i

i i i i

t y sdr ds
ds ds t y s



 

   
    

   
 

 

That is, the best response function is linear with -1 slope. Since player i cannot contribute a 

negative value, ( ) max{ ,0}i i i ir s s a    , where ai is the intercept. For simplicity, assume that 

1 0ja a  for all j  1, and  for all .i iw a i  Then, since 1 1 1(0)  and ( ) 0 for all 1,jr a r a j  

1( ,0, ,0)a   is a Nash equilibrium. According to Bergstrom, Blume and Varian (1986, 1992), who 

prove the uniqueness of Nash equilibrium in a general setting, and Bergstrom, Blume and 

Varian (1986), who show the Nash equilibrium for quasilinear utility functions, we have the 

following proposition. 

 

Proposition 1. Suppose that 1 0ja a   for all j  1 and i iw a  for all i. Then, the unique Nash 

equilibrium is 1( ,0, ,0).a   

 

The Nash equilibrium is not Pareto efficient. Let ( , ) ln .i i i iu x y x a y  5 Then, the 

Samuelson condition is .ja y  Since the public good level at the Nash equilibrium is 1 ,a  it 

is apparently lower than the Pareto efficient level. 

At time t, let player i’s choice of contribution be 
t
is . We simply assume that player i 

chooses ( )t
i ir s  at time t + 1, where t = 1, 2, … That is, we assume that every player chooses the 

best response to the sum of strategies chosen by the other players in the immediately preceding 

period. Therefore, the stability of the following system must be analyzed.  

 

(1) 1 max{ ,0}t t
i i is s a

    i = 1, …, n and t=1, 2, …. 

 

Ignoring the maximization part, we can rewrite the system in the following manner. 

 
1t t  s As a , 

                                                           
4 If ui is strictly quasi-concave, the maximizer is unique and ri is continuous as per Berge’s maximum 
theorem. 
5 The best response function for this utility function is ( ) max{ ,0}.i i i ir s s a     
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where

0 1 1
1 0

1

1 1 0

  
  
 
   

A





 



, 
1
t

t

t
n

s

s

 
   
  

s   and 
1

.

n

a

a

 
   
  

a   

 

The stability property is governed by the eigenvalues of A, that is, (1 ,1, ,1)n  .6 Furthermore, 

as Proposition 1 shows, the Nash equilibrium is not located on the linear part of the system and 

hence, it is not a solution of 
1[ ] s I A a , where I is the identity matrix.7 That is, understanding 

the stability property of (1) is a new challenge. 

In order to understand the stability of the system, let us introduce the maximum response 

function 1( )IIm s  of player II, treating all players other than player 1 as one player and denoting 

the player as player II: 

 

1 11

1

1 1 11

1

1 2 3 4 1 3

1 2 3 1 2

2 1

( 1)  for 0  

( 2)  for  

( )
2  for 

 for 
0 for 

n

j nj

n

j n nj

II

n s a s a

n s a a s a

m s
s a a a s a

s a a s a
a s







    

    
 
    

   
 




 , 

 

which is a continuous piecewise linear function. This function is not the best response function 

of all players other than player 1, but shows the maximum possible sum of contributions given 

1.s   

Consider the following example. Let 1 2 3( , , ) (10,6,2)a a a   and 12 for all .iw i  Then, IIm  

is a function summing up 1max{ 6,0}s  1and max{ 2,0}s   vertically. This is a-b-c-e in Figure 

1, where the vertical axis, IIs , represents the range of 1( )IIm s  for player II and 1s  for player 1. 

The slope of a-b is -2, and the slope of b-c is -1. If 1s  is greater than 6, neither players 2 nor 3 

contribute, and, hence, the c-e part is flat.  

Let 
1 1 1 1

1 2 3( , , ) (1, 5,0)s s s s  , which corresponds to 
1s  in Figure 1. Then, the best response is 

(5,5,0) which corresponds to q. Consider another initial point such as 
1 (1, 3,2)s  , which also 

corresponds to 
1s . The best response is (5,3,0), which corresponds to p. Let 

1ˆ (1,1, 4)s  , which 

still corresponds to 
1s . Then, the best response is (5,1,0), which corresponds to k. Since 

2 1 1
2 1 3max{ ( ) 6,0}s s s     and 

2 1 1
3 1 2max{ ( ) 2,0},s s s     for 

1
1 1s   the maximum possible 

response 
2
2s  is 5, and the maximum possible response 

2
3s  is 1. The sum of 5 and 1 shows (1)IIm  

or d. That is, the range of reactions of players 2 and 3 for 1 1s   is from 0 to (1)IIm , which is d-f. 
                                                           
6 See Saijo, Feng and Kobayashi (2017). 
7 Note that every element of I - A is 1 and, hence I-A, is not invertible.  
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1 1

1 1 1{( , ) : [0, ( )]}IIa s b b m s   to 
1s  is denoted by 

1( )M s , and called the set of maximum possible best responses to 
1.s  Since the reaction of player 1 to 

1s  is 5, 
1( )M s  should be g-h. Three best responses, such as q, p, and k, are in 

1( ).M s  If 
1 ,s d

then ( )M d  is d’-f’, and if 
1 ,s f then ( )M f  is d”-e. That is, if 

1s  is somewhere on d-f, then the 

set of the maximum possible best responses to d-f is square d’-f’-e-d”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Best response areas. 

 

Consider now what is the next set of maximum possible responses to square d’-f’-e-d” in 

Figure 1. Point d’ becomes line r-f’ and q’ becomes r’-h. Furthermore, r becomes r”-f”, and any 

point between r and f’ becomes a line parallel to r”-f” and located between f”-e. That is, the 

maximum possible best responses to line d’-f’ is rectangle r-f’-e-r’’’. Now, consider a point in d’-

r-r’’’-d”, such as q. Point q becomes line k-h, and this line is included in rectangle r-f’-e-r’’’ since r-

c-e is included in r-f’-e-r’’’. Consider any point such as k in r-f’-e-r’’’. Point k becomes line k’-h’ in 

r-f’-e-r’’’. That is, the set of maximum possible responses to square d’-f’-e-d” is rectangle r-f’-e-r’’’. 

It is now easy to see that the set of maximum possible responses to rectangle r-f’-e-r’’’ becomes 

square r”-f”-e-r’’’. That is, if this sequence of sets converges to the Nash equilibrium, the original 

sequence must converge to it. The strategy for showing the stability of the system is described 

as follows.  
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First, consider Figure 2 and take any 
1.s  Then, 

2s  must be in rectangle a-0-e-b in Figure 2, 

since the largest maximum possible best response set to 
1
1s  is 

2
[0, ]

n

jj
a

  and the largest 

maximum possible best response set to 
1

2

n

jj
s

  is 1[0, ].a  Consider now the set of maximum 

possible best responses to a-0-e-b. The maximum possible best responses to line a-0 covers 

square c-f-e-b, the maximum possible best responses to a-0-f-c are in c-f-e-b, and the maximum 

possible best responses to c-f-e-b are in c-f-e-b. Consider the next set of maximum possible best 

responses to square c-f-e-b. The maximum possible best responses to line c-f are in rectangle d-f-

e-p, the maximum possible best responses to c-d-p-b are in rectangle d-f-e-p, and the maximum 

possible best responses to d-f-p-e are in d-f-p-e. Similarly, the next set of maximum possible best 

responses to rectangle d-f-p-e is square g-h-e-p. Repeating the same procedure, g-h-e-p becomes 

rectangle k-h-e-q, and k-h-e-q becomes square r-w-e-q. Since the base of square r-w-e-q is on the 

flat part of ,IIm the next rectangle is line w-e. Then, any best response point on w-e becomes one-

point square e, which is the Nash equilibrium. Stability here is global stability: any initial point 

converges to some equilibrium point.8  

 
Figure 2. From square to rectangle. 

 

Let us introduce two concepts. Rec 1( )s  is the minimum rectangle containing two points 

1 1( , ( ))IIs m s  and 1( ,0)a , where a rectangle is a set containing the interior and the boundary, and  

                                                           
8 See Arrow and Hurwicz (1958) and Arrow, Block, and Hurwicz (1959). 
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sq 1( )s  is the minimum square containing two points 1 1 1( , )s a s  and 1( ,0)a , where a square is a 

set containing the interior and the boundary. As such, we have the following lemma. 

 

Lemma 1. Suppose that 1 2
     .

n

i i jj
w a for all i and a a


   Let 1 1[0, ).s a  Then,  

(i) the set of maximum possible best responses to rec 1( )s  is sq 1 1( ( ))IIa m s  and sq 1 1( ( ))IIa m s  is a 

proper subset of rec 1( )s ; and 

(ii) the set of maximum possible best responses to sq 1( )s  is rec 1( )s  and rec 1( )s  is a proper subset of  

sq 1( )s . 

 

Proof. (i) Since  for all ,i iw a i  player i can choose a strategy up to .ia  Take any 1 1[0, ).s a  

Since 1 2

n

jj
a a


  and the construction of ,IIm  player 1’s best response curve is always above 

IIm , except for 1 1 ,s a  i.e., 1 1 1( )IIm s a s   and hence 1 1 1( ).IIs a m s   Since 1s  is the value of the 

horizontal axis of the left bottom vertex of rec 1( )s , 1 1( )IIa m s  is the value of the left bottom 

vertex of sq 1 1( ( )).IIa m s  Therefore, the base of sq 1 1( ( ))IIa m s  is a proper subset of the base of 

rec 1( ).s  Since the height of sq 1 1( ( ))IIa m s  is 1( )IIm s , because 1 1 1( ( ))IIa a m s  1( )IIm s , and the 

height of rec 1( )s  is 1( )IIm s  by definition, both have the same height. That is, sq 1 1( ( ))IIa m s  is a 

proper subset of rec 1( )s .  

In order to show that the set of maximum possible best responses to rec 1( )s  is  

sq 1 1( ( )),IIa m s  consider three possible areas of rec 1( ).s  Consider first any point 1( , )s b  where 

1[0, ( )].IIb m s  Then, 1 1 1( , ) {( , ') : for some ' [0, ( )]}.IIM s b a b b b m s    Since 

1 1 1( ) ( ( ))IIa b a m s   1( ) 0,IIm s b    1( , )M s b  is in sq 1 1( ( ))IIa m s , and hence, the set of 

maximum possible best responses to 1( , )s b  with 1[0, ( )]IIb m s  is exactly the same as  

sq 1 1( ( )).IIa m s   

 Consider any point 1( , )s b  where 1 1 1 1[ , ( )]IIs s a m s    and 1[0, ( )].IIb m s  Since IIm  is a 

non-increasing function, 1 1( ) ( ).m s m s   Since 1 1 1 1( ) ( ),II IIa m s a m s    1( , )M s b  must be in  

sq 1 1( ( )).IIa m s  

 Finally, consider any point 1( , )s b  where 1 1 1 1[ ( ), ]IIs a m s a    and 1[0, ( )].IIb m s  

Applying the same argument above, 1( , )M s b  must be in sq 1 1( ( )).IIa m s  

(ii) Take any 1.s  Since 1 2
,

n

jj
a a


  the construction of ,IIm  and player 1’s best response curve 

is always above IIm  except for 1 1 ,s a rec 1( )s  is a proper subset of sq 1( )s . Since IIm  is a non-

increasing function, 1 1( ) ( )m s m s   for all 1 1 1[ , ],s s a   and hence, 1( , )M s b  with 1 1 1[ , ]s s a   and 

1 1[0, ]b a s   must be in rec 1( )s .█ 

 

Proposition 2 shows a necessary and sufficient condition for stability. 
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Proposition 2. Suppose that 1 0ja a  for all j  1 and i iw a  for all i. Then, the simultaneous system 

of difference equations is globally stable if and only if 1 2
.

n

jj
a a


  

 

Proof. (i) The “if” part. Take any initial point 
1.s  Then, the best response 

2s  to 
1s  must be in 

rec(0). By lemma 1, the next set of maximum possible best responses to rec(0) is sq 1 2
( )

n

jj
a a


 , 

and hence, the height of the square is 
2

.
n

jj
a

  Let 1 2
0.

n

jj
c a a


    Since the slope of IIm  is 

at most -1 as far as 1 2[0, ]s a , the sequence from rec(0) to sq 1 2
( )

n

jj
a a


  and the square to the 

next rectangle ends in a finite step, due to the fact that the height of a square shrinks by at least c 

to the next square. Once the base of a square reaches an interval 2 1[ , ]a a  on the 1s  axis that is not 

a point since 1 2 ,a a the next rectangle is an interval contained in 2 1[ , ]a a . As such, the best 

response to the interval must be the Nash equilibrium. 

(ii) The “only if” part. It suffices to show that if 1 2
,

n

jj
a a


   the system is unstable. Let 

1
1 2( , , ..., )ns a a a . Then, since 1 2

,
n

jj
a a


  the best response is (0, 0, …, 0). The next best response 

is 1 2( , ,..., )na a a  and hence, the system is not stable. █ 

 

3. Instability and the number of players: an example  

Notice that stability in Proposition 2 is not local, but global. That is, as far as 1 2

n

jj
a a


   is 

satisfied, the system goes to the Nash equilibrium in a few steps starting from any initial point. 

When 1 2
,

n

jj
a a


   the system is not globally stable. However, a sequence starting from an 

initial point in a rather large area such as a-c-w1-d in Figure 3-(a) converges to the Nash 

equilibrium. In this sense, the system is locally stable.  

The stability on the boundaries of a-c-w1-d in Figure 3-(a) is rather complex, since we 

translate the n dimensional space into the two dimensional space. Let 1 2 3( , , ) (10,6, 4)a a a   and 

10iw   for all i. Then, the Nash equilibrium is (10, 0, 0), as shown in Figure 3-(b), but the system 

is not stable since 1 2 3.a a a   Assume that each player can announce only integers. Consider 

1 (0, 4,6)s  , that is a in the figure. Then, 
2 (0,0,0)s  , 3 (10,6, 4)s   and 

4 (0,0,0).s   That is, this 

sequence alternates between 0 and d, and hence, it does not converge to the Nash equilibrium. 

On the other hand, consider 
1 (0, 3,7)s   that is also a in the figure. As such, 

2 (0,0,1),s 
3 (9, 5, 4),s  4 (1, 0,0),s  5 (10, 5, 3),s  6 (2,0,0),s   

7 (10, 4, 2),s  8 (4, 0,0),s  9 (10, 2, 0),s 
10 (8, 0,0),s   and 

11 (10,0,0).s   That is, this sequence converges to the Nash equilibrium. The 

upper right number of a is the number of initial points that converge to the Nash equilibrium. 

Consider 
1 (5,9,1)s  , that is b in the figure. Then, 

2 (0,0,0),s  3 (10,6, 4),s  and 
4 (0,0,0).s   

That is, this sequence does not converge to the Nash equilibrium. On the other hand, consider 

1 (5,10,0)s  , that is also b in the figure. Consequently, 
2 (0,1,0),s  3 (9,6, 3),s   and 4 (1, 0, 0).s   

For the rest of the sequence, see the sequence starting from 
1 (0, 3,7)s  , which converges to the 

Nash equilibrium.  
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Figure 3. The stable initial point area when the system is not stable. 

 

Consider points that are not in -0- -a e d , where the bar indicates the closure of a-0-e-d. If 

each element of 
1s  is rather large, such as 

1 (7, 8,9),s   then 
2s  is at 0, i.e., 

2 (0,0,0).s   

Therefore, the sequence repeats d and 0. However, there is a chance for some 
2s  to be in the 

stable part of a-0-e-d even though 
1s  is not in -0- - .a e d  For example, consider 

1 (1,10, 4)s  , that is 

c in the figure. Then, 
2 (0,1,0)s  and the rest are the same in the above paragraph. That is, the 

sequence converges to the Nash equilibrium.  

Consider the number of initial points satisfying 1 1 1
1 2 30 10 and 0 10,s s s      that is, the 

number of all possible initial points of -0- - .a e d  As such, since the number of initial points 

satisfying 
1 1
2 30 10s s    is 66,9 and the number of possible choices of player 1 is 11, the number 

of all possible initial points of -0- -a e d  is 726 66 11.   On the other hand, the number excluding 

a-d in -0- -a e d  is 605 55 11.   Furthermore, the number of initial points that converge to the 

Nash equilibrium is 680, and the number of initial points that are not in -0- -a e d  and converge to 

the Nash equilibrium is 45 (the sum of small numbers where the vertical axis value is at least 11 

in Figure 3-(b)). That is, the number of initial points that are in -0- -a e d  and converge to the Nash 

equilibrium is 635. Furthermore, since the number of initial points on a-d that converge to the 

Nash equilibrium is 31, 605 + 31 - 1 = 635, that is consistent with the previous number where 

“1” is for the origin that does not converge to the Nash equilibrium. Generally, initial points 

that are in a-0-e-d or that are “close” to a-0-e-d converge to the Nash equilibrium. 

                                                           
9 The computation is done in Mathematica 9.  
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Although the system is not stable due to the distribution of ai, if the number of initial 

points in a-c-w1-d in Figure 3-(a) is relatively large compared with the total number of all 

possible initial points, instability is not a significant issue. Considering the previous example 

and assuming that each player can announce only integers, let the number of initial points in 

-0- -a e d  be a surrogate number that converges to the Nash equilibrium. Table 1 shows the 

number of players n, the number of initial points An satisfying 
1
10 10s   and 1

1
0 10,

n

jj
s


   

An+1/An, and An/11n. Note that 11n are the all possible initial points when the number of players 

is n. Then, An/11n is a rough ratio of initial points that converges to the Nash equilibrium. As 

the number of players increases, the ratio rapidly decreases. When n is 5, 6, 7 or 8, the ratio is 

7%, 2%, 0.5% or 0.1%, respectively. This is because the number of all possible initial points 

increases eleven times as the number of players increases, while the number of initial points in 

-0- -a e d  increases less as the number of players increases (see 1{ / }n nA A  in Table 1). That is, 

instability of the VCM is a serious problem even the number of players is below 8. 

 

Table 1. Possible stable ratio when the system is not stable. 

The 

number of 

players (n) 

The number of initial 
points ( )nA  satisfying  

1
10 10s   and

1

1
0 10

n

jj
s


   

 

1 /n nA A  

 

/11n
nA  

3 726  726/113 = 0.5456 

4 3,146 3,146/726=13/3=4.33 3,146/114 = 0.2149 

5 11,011 11,011/3,146=3.5 3,146/115 = 0.0684 

6 33,033 33,033/11,011=3.0 33,033/116 = 0.0186 

7 88,088 88,088/33,033=8/3=2.67 88,088/117 = 0.0045 

8 213,928 213,928/88,088=17/7=2.43 213,928/118 = 0.0010 

 

4. The Cobb-Douglas case: Examples 

 Several experimentalists, such as Andreoni (1993), Chan, Mestelman, Moir, and Muller 

(1996), Cason, Saijo, and Yamato (2002), and Sutter and Weck-Hannemann (2004), use Cobb-

Douglas utility functions assuming that every players has the same utility function. As such, it 

could be useful to summarize the stability property when players have heterogeneous Cobb-

Douglas utility functions.  

Let player i’s utility function be 
1( , ) ( ) ( )i i

i i i i i iv s s w s s s 
    , where 0 1.i    Then, the 

first order condition is 
1/ (( )/( )) i

i i i i i iv s s s w s 
       (1 )(( )/( )) 0.i

i i i iw s s s 
     That is, 

( )/( ) (1 )/ ,i i i i is s w s      and, hence, (1 ) .i i i i is s w     Therefore the system is  
1t t  s As a , 
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where

1 1

2

1

0
0

0
n

n n



  
  
 
   

A





 



, 
1
t

t

t
n

s

s

 
   
  

s   and 

1 1

2 2

(1 )
(1 )

.

(1 )n n

w
w

w

  
   
 
   

a


 

 

The asymptotic stability of the system is governed by the eigenvalues of A, assuming that 

the Nash equilibrium is in the interior. For example, let 1 2 3( , , )    (3/4, 1/2, 2/5) and 

1 2 3( , , )w w w  (20, 9, 8). Then, det[I-A]  0, the Nash equilibrium is (7/17, 42/17, 62/17), which 

is in the interior, and the eigenvalue vector is (1.074, -0.634, -0.441). Hence, the system is not 

asymptotically stable since some of the absolute values of eigenvalues are above 1. Let 

1 2 3( , , )    (3/5, 1/2, 2/5) with the same endowment vector. Then, det[I-A]  0 and the Nash 

equilibrium is (167/25, 3/25, 52/25), which is in the interior, and the eigenvalue vector is (0.991, 

-0.554, -0.437). Hence the system is asymptotically stable. That is, the stability of the system is an 

important issue when utility functions are Cobb-Douglas. 

 

5. Concluding remarks 

We find a necessary and sufficient condition for global stability of the VCM with 

heterogeneous quasilinear preferences under simultaneous difference equations. The 

implication is that there must exist an eminent player whose willingness to totally contribute 

dominates the sum of the willingness to contribute of the rest. Since the anti-tsunami 

embankment case is rare, the VCM is not globally stable. Although the VCM is not globally 

stable, there are initial points that converge to the Nash equilibrium. However, the size of these 

points relative to all possible initial points diminishes rapidly as the number of players 

increases. If we consider that these two points are generic, the VCM perspective is bleak. That 

is, it is intrinsically unstable, and, hence, its applicability problematic. 

The validity of our findings can be tested by experiments. Although there are many 

experimental results, almost none use heterogeneous and nonlinear payoff functions. 

Additionally, the number of players used in VCM experiments is at most five to eight, 

excluding experiments with large number of subjects. Consequently, conducting experimental 

research in this area is required. 
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