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Abstract

This paper studies pillage games (Jordan in J Econ Theory 131.1:26-44,
2006, “Pillage and property”), which are well suited to modelling unstruc-
tured power contests. To enable empirical test of pillage games’ predic-
tions, it relaxes a symmetry assumption that agents’ intrinsic contributions
to a coalition’s power is identical. In the three-agent game studied: (i) only
eight configurations are possible for the core, which contains at most six
allocations; (ii) for each core configuration, the stable set is either unique
or fails to exist; (iii) the linear power function creates a tension between a
stable set’s existence and the interiority of its allocations, so that only spe-
cial cases contain strictly interior allocations. Our analysis suggests that
non-linear power functions may offer better empirical tests of pillage game
theory.
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1 Introduction
This paper studies unstructured power contests between sophisticated, well-informed
agents — which we regard as pervasive even in the presence of strong institutions.
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Consider: a government that shelves legislation on realising that it would lose a
vote; or an employee who chooses not to whistle-blow a policy violation, know-
ing that management would find a way of tarnishing and firing her if she did;
or powerful states that sell weapons to subordinate allies to maintain both their
allegiance and their effectiveness.

Such situations are often marked by: (i) actors who find ways to exercise
power through formal institutional structures; (ii) power that depends both on
coalitions’ intrinsic characteristics and the resources available to them; (iii) agents
who can predict the outcome of power contests, so do not spend resources on
costly signalling, but costlessly accept their defeat.

To formalise analysis, this paper studies pillage games, a class of game in-
troduced by Jordan (2006). As cooperative games, they do not rely on a game
form — which might be contested in an unstructured power contest.1 Instead, a
dominance relation is defined directly on possible outcomes.

In pillage games, the dominance relation is represented by a power func-
tion that monotonically associates a power to coalitions and their resources: as
coalitions gain members or resources, they become more powerful. Thus, pil-
lage games provide a richer treatment of resources than do games in characteristic
function form (the best known class of cooperative games), which rule out both
the possibility of conflict between coalitions “from the beginning” (Maskin, 2003)
and the possibility that resources might help produce power.

Not only do pillage games seem well suited, then, to study unstructured power
contests, but their stable sets — the solution concept most analysed — have at least
three appealing theoretical properties. First, they are equivalent to (farsighted)
cores in expectation (Jordan, 2006), allowing them to be interpreted as undomi-
nated allocations for farsighted agents. Second, they are small.2 Third, in contrast
to the possibly infinite number of stable sets found in games in characteristic func-
tion form (q.v. the famous ‘signature’ example of Shapley (1959)), multiplicity
seems less of a problem in pillage games.3

In spite of these appealing modelling and theoretical properties, the pillage

1As Aumann (2008) observed, “procedures are not really all that relevant; that it is the possi-
bilities for coalition forming, promising and threatening that are decisive, rather than whose turn
it is to speak”.

2Jordan (2006) proved that they were finite; Kerber and Rowat (2011) tightened Jordan’s bound
to a Ramsey number; Saxton (2011) tightened the bound yet further; Rowat and Kerber (2014)
derived a tight bound of 15 allocations for three-agent pillage games satisfying three additional
axioms on their power functions; in a multi-good extension of Jordan (2006), Beardon and Rowat
(2013) both proved that stable sets have measure zero and bounded their Hausdorff dimension.

3Jordan (2006) proved that his leading class of pillage games had a unique stable set, and did
not find examples of multiple stable sets; Rowat and Kerber (2014) proved uniqueness in three
agent pillage games satisfying their three additional axioms; however, MacKenzie, Kerber, and
Rowat (2015) constructed examples of pillage games with multiple (finite) stable sets.
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games literature has been entirely theoretical, leaving open the question of whether
pillage games can deliver insights into actual power contests. Further, the theory
has focussed almost exclusively on cases in which agents’ intrinsic contributions
to a coalition’s power are symmetric.4 As symmetry is a very strong property,
it tends not to be satisfied in empirical settings: political parties’ bases (whether
socio-economic or ethnic) vary in power; employees’ inalienable characteristics
(inc. race and gender) influence their ability to effect outcomes; nation states are
even more heterogeneous, with populations varying by five orders of magnitude.

This paper therefore relaxes symmetry, allowing us to derive predictions of
pillage game theory in the more empirically interesting environment of asymmet-
ric agents.5 For the sake of tractability, it works with an asymmetric version of the
three-agent majority pillage game.6 In the classic majority game (in characteristic
function form), one allocation dominates another if and only if it is preferred by a
strictly larger coalition. In the majority pillage game (Jordan and Obadia, 2015),
an allocation may also dominate another if the coalitions favouring and opposing
it are the same size, as long as the former holds more resources. This paper gen-
eralises further, allowing agents’ intrinsic contributions to be asymmetric, and for
the resource contribution to overpower the intrinsic contributions. Explicitly, the
class of power functions considered is

π (C,x) =
∑
i∈C

(xi + vi) ; (1)

where C is a non-empty coalition of agents, indexed by i ∈ I ≡ {1, 2, 3}, x ≡
(x1, x2, x3) such that

∑
i∈I xi = 1 and xi ∈ R+ is an allocation, and vi ∈ R+ allows

agents’ intrinsic power to differ. Power function (1) provides one of the simplest
possible specifications of an asymmetric pillage game, introducing one parameter
per agent.

We are particularly interested in two questions. First, over what range of the
vi do stable sets exist? We already have answers for the symmetric special cases:

1. when vi = 0 for all three agents, the unique stable set consists of the alloca-
tions (1, 0, 0) ,

(
1
2 ,

1
2 , 0
)
,
(

1
2 ,

1
4 ,

1
4

)
and their permutations (Jordan, 2006);

4The exception to this is MacKenzie, Kerber, and Rowat (2015), which violated symmetry for
theoretical purposes, constructing examples in which pillage games might have multiple stable
sets.

5A more general factor impeding empirical tests of pillage game theory is its reliance on the
von Neumann and Morgenstern stable set, which von Neumann himself seemed to oppose testing
(Leonard, 2010, p.244, pp.260–262). Yet, although cooperative game theory has disappeared from
textbooks on empirical game theory, the earliest empirical game theory addressed cooperative
games (q.v. Kalisch et al., 1954).

6Given cooperative game theory’s combinatorial possibilities for coalition formation, the three-
agent case has often been the starting point for analysis (von Neumann and Morgenstern, 1953;
Thrall and Lucas, 1963).
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2. when vi = v ∈ (0, 1], no stable set exists (Rowat and Kerber, 2014);

3. when vi = v > 1 for all three agents,
(

1
2 ,

1
2 , 0
)

and its permutations form the
unique stable set (Jordan and Obadia, 2015).

Second, can allocations in stable sets split the unit endowment between all
three agents? If not, this limits applicability of the theory to situations in which
the winner(s) ‘take all’.

The rest of the paper is structured as follows. Section 2 introduces pillage
games.7 Theorem 1 identifies six possible allocations that may belong to the
asymmetric three-agent majority pillage game’s core; Corollary 1 identifies the
corresponding values of (v1, v2, v3) for each of the eight possible cores.

Section 3 analyses the empty core case, in which no agent is ever more pow-
erful than the other two. Theorem 2 is a necessary and sufficient condition for
the existence of a unique stable set comprising three allocations, each splitting the
resource equally between two of the agents. Perhaps surprisingly, this is identical
to the stable set in the symmetric special case. Intuitively, power struggles over
these 50/50 allocations pit one agent (without resources) against another agent
(with half the resources); as long as the former’s intrinsic power is not too much
greater than the latter’s, the 50/50 split is defensible; otherwise, the stable set fails
to exist.

Section 4 addresses the non-empty core case. As any stable set must contain
the core, this yields a simple algorithm for deciding and computing stable sets.
First, if a stable set exists, the core must belong to it. Second, allocations domi-
nated by the core must be excluded. Third, the remaining allocations — typically
loci within which one agent is as powerful as the other two — can be analysed
using techniques from the empty core case.

These last allocations induce a tension between a stable set’s existence and
the possibility of interior allocations. Along the loci, power contests again reduce
to those setting one agent against one other. For a strictly interior allocation to
belong to a stable set, there must be a point on such loci at which the two contes-
tants are equally powerful. As this allocation does not dominate its neighbouring
allocations, some way of dominating those neighbours must be found. Typically
(as will be seen below) this requires including the extremal elements of the locus,
which lie on the simplex’s edge. When the relevant vi > 0, these extremal allo-
cations are themselves dominated by core allocations, preventing existence.8 If,
though, no interior point balances the two contestants’ power, one of the core allo-
cations may also be extremal, and dominate all other allocations along the locus,
establishing existence – but precluding interior allocations.

7More thorough introductions are found in Jordan (2006) and Rowat and Kerber (2014).
8Rowat and Kerber (2014) analysed this effect in detail in the symmetric case.
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Section 5 concludes the paper. To answer our two primary questions: non-
existence of stable sets is pervasive in this class of pillage games; strictly inte-
rior allocations only occur in special cases — including both new configurations
and the symmetric case already known to the literature (Jordan, 2006, Theorem
3.3); when stable sets do exist, they are unique. Thus, for multiple stable sets in
asymmetric majority pillage games, at least four agents are required (MacKenzie,
Kerber, and Rowat, 2015). The link between the linear power function used here
and the non-existence mechanism suggests that non-linear power functions may
by better candidates for empirical tests of the theory.

2 Pillage games
Let I be a finite set of agents, indexed by i. An allocation is a division of a unit
resource among them, so that the feasible set of allocations is

X ≡

(xi)i∈I

∣∣∣∣∣∣∣xi ≥ 0,
∑
i∈I

xi = 1

 . (2)

We index agents in two different ways. First, if we merely wish to label them, we
use i, j and k or 1, 2 and 3. Second, if we wish to order agents by their intrinsic
contributions to their coalitions’ power, we use a, b and c such that

va ≥ vb ≥ vc ≥ 0. (3)

If we display an allocation’s constituent coordinates, we do so in the natural order
implied by our choice of index, whether x = (x1, x2, x3) or — if we wish to
order agents by intrinsic power — x = (xa, xb, xc). This does not imply that, for
example, xa = x1.

Let ⊂ denote a proper set inclusion, and use ⊆ to allow the possibility of equal-
ity. Jordan (2006) defined a power function over subsets of agents and allocations,
so that π : 2I × X → R satisfies:

(WC) if C ⊂ C′ ⊆ I then π (C′,x) ≥ π (C,x)∀x ∈ X;

(WR) if yi ≥ xi for all i ∈ C ⊆ I then π (C,y) ≥ π (C,x); and

(SR) if ∅ , C ⊆ I and yi > xi for all i ∈ C then π (C,y) > π (C,x).

Simply, the axioms imply that more is better: by axiom WC, adding agents makes
a coalition more powerful; by axiom WR, weakly adding resources makes a coali-
tion weakly more powerful; axiom SR is a strict version of axiom WR. It is easily
verified that function (1) is a power function.

The symmetry condition broken by this paper was introduced as an anonymity
axiom in Rowat and Kerber (2014):
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(AN) let σ : I → I be a bijective function permuting the agent set; if
i ∈ C ⇔ σ (i) ∈ C′ and xi = x′σ(i), then π (C,x) = π (C′,x′).

This prevents power depending on the identity of agents, allowing it to depend
merely on their cardinality and resources. As noted in the introduction, prior to
MacKenzie, Kerber, and Rowat (2015), all previous examples of power functions
studied by the literature satisfied it.

The wealth is power (WIP) function defined in Jordan (2006),

πw (C,x) =
∑
i∈C

xi; (4)

is a special case of power function (1) in which vi = 0 for all i.
An allocation y dominates an allocation x, written y K x, iff

π (W,x) > π (L,x) ;

where W ≡ {i |yi > xi } and L ≡ {i |xi > yi } are called the win set and lose set,
respectively. Thus, allocation y dominates allocation x if and only if the set
of agents who benefit in a re-allocation from x to y (the win set, W) are more
powerful at the original allocation y than is the set of agents who lose from that
re-allocation (the lose set, L). 9

By the strict inequality, domination is irreflexive; by axiom SR, it is asymmet-
ric. As in the general case (von Neumann and Morgenstern, 1953), dominance is
not generally transitive.

For Y ⊂ X, let
D (Y) ≡ {x ∈ X |∃y ∈ Y s.t. y K x } (5)

be the dominion of Y , the set of allocations dominated by an allocation in Y .
This paper studies asymmetric three player majority pillage games, defined as

follows:

Definition 1. An asymmetric n = 3 majority pillage game is a profile 〈I, X, (vi)i∈I , π〉,
where I = {1, 2, 3}, X is defined by equation (2), (vi)i∈I are non-negative reals, and
the power function π is defined by (1).

2.1 The core
The core is the set of undominated allocations, K ≡ X\D (X).

Now define two types of allocation:

9When referring to two allocations in the following, we may use W and L as a shorthand to
indicate the agents benefiting and losing, respectively, from a move between them, even if we do
not explicitly define them as such.
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Definition 2. (Jordan, 2006): let ti ∈ X be a tyrannical allocation such that ti
i = 1

and ti
j = 0 for all j , i ∈ I.

Let bi j bilaterally balance power, so that π
(
{i} , bi j

)
= π
(
{ j} , bi j

)
when bi j

k = 0
for distinct agents i, j and k.

Thus, given power function (1), we have:

bi j
i =

1
2

(
1 − vi + v j

)
. (6)

Then:

Theorem 1. In the asymmetric n = 3 majority pillage game, the core can contain
no allocations other than t1, t2, t3, b12, b13 and b23:

1. ti belongs to the core iff vi ≥ v j + vk − 1; and

2. bi j belongs to the core iff vk = 0 and v j ∈ (vi − 1, vi + 1).

Proof. First, consider the allocations that assign the resource exclusively to a sin-
gle agent. These are, by definition, t1, t2 and t3. Each ti belongs to the core when
vi ≥ v j + vk − 1.

Now consider the allocations that split the resource between two agents, say i
and j, so that xk = 0. For these agents to defend their holdings against the other
two, the following inequalities must be satisfied:

xi + vi ≥ x j + v j + vk;
x j + v j ≥ xi + vi + vk.

Combining these requires x j + v j + 2vk ≤ xi + vi + vk ≤ x j + v j. As all the numbers
are non-negative, this forces vk = 0. Thus, xi + vi = x j + v j > xk = 0 which, with
the unit endowment constraint, yields xi =

1
2

(
1 − vi + v j

)
and x j =

1
2

(
1 + vi − v j

)
,

which yield the bi j. Constraining bi j
i and bi j

j to lie in (0, 1) yields the interval
condition for v j in the statement of the Theorem.

Finally consider allocations that split the resource between all three agents.
By the same reasoning as above, these now require

2xi + x j + 2vi + v j ≤ xi + vi + xk + vk ≤ x j + v j;

for all distinct agents i, j and k. This requires, in the case above, xi = vi = 0;
by permutation, these conditions must apply to all agents, an impossibility by the
unit endowment.

The conditions under which the allocations belong to the core are direct con-
sequences of the requirement that each agent holding resources must be at least as
powerful as the other two combined. �
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As a bi j can belong to the core only if both ti and t j do, the following corre-
spondences between cores and parameters holds:

Corollary 1. 1. K = ∅:
va < vb + vc − 1. (7)

2. K = {ta}:
va ≥ vb + vc − 1, vb < va + vc − 1. (8)

3. K =
{
ta, tb
}
:

(vb ≥ va + vc − 1) and (0 < vc < va + vb − 1) ; or (9)
vc = 0 < vb = va − 1. (10)

4. K =
{
ta, tb, bab

}
:

vc = 0, vb ∈ (va − 1, va] . (11)

5. K =
{
ta, tb, tc

}
:

vc ≥ va + vb − 1 and vc > 0; or (12)
va = 1 > vb = vc = 0. (13)

6. K =
{
ta, tb, tc, bab

}
:

vc = 0 < vb ≤ 1 − va. (14)

7. K =
{
ta, tb, tc, bab, bac

}
:

0 = vc = vb < va ≤ 1. (15)

8. K =
{
ta, tb, tc, bab, bac, bbc

}
:

vc = vb = va = 0. (16)

The corollary follows directly from the theorem’s requirement that each agent
holding resources must be at least as powerful as the other two combined. Each
case enumerated simply instantiates the theorem’s conditions for the inclusion or
exclusion of the ti and bi j. Case 4 modifies the condition for bab’s inclusion in
light of va ≥ vb.

Note that the core excludes the following configurations:{
ta, tb, tc, bac

}
,
{
ta, tb, tc, bbc

}
,
{
ta, tb, tc, bab, bbc

}
,
{
ta, tb, tc, bac, bbc

}
.

Further note that, under the conditions of inequalities and equalities in (10),
bab = tb.
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2.2 Stable sets
The stable set is the original von Neumann and Morgenstern (1953) solution con-
cept, initially just called the ‘solution’. Unlike the core, which is defined point-
wise, it is defined setwise, making it harder to compute. Intuitively, a set of al-
locations is stable if they satisfy internal stability (no allocation in a stable set
dominates another) and external stability (every allocation outside a stable set is
dominated by at least one allocation in a stable set).

More precisely, a set of allocations, S ⊆ X, is a stable set iff it satisfies internal
stability,

S ∩ D (S ) = ∅; (IS)

and external stability,
S ∪ D (S ) = X. (ES)

The conditions combine to yield S ≡ X\D (S ).
While stable sets may not exist, or may be non-unique, the core necessarily

belongs to any stable set; when the core also satisfies external stability, it is the
unique stable set. Jordan (2006) proved that a pillage game’s stable set has the
property of being the set of allocations that are undominated given a consistent set
of expectations about what subsequent domination operation would be attempted
following the initial one.

3 The empty core
The analysis in this section extends that in Jordan and Obadia (2015) to the asym-
metric case. The core is empty when inequality (7) holds, so that even ta is not
defensible.

The following lemma generalises Jordan and Obadia (2015, Lemma 3.4(i))
beyond its symmetric case of v1 = v2 = v3:

Lemma 1. Suppose that S is internally stable in an n = 3 asymmetric majority
pillage game with an empty core. If x and x′ belong to S , then there exists an
i ∈ I such that xi = x′i . Equivalently, an empty core implies that, if distinct x and
x′ belong to S , then W ≡

{
i ∈ I
∣∣∣xi > x′i

}
and L ≡

{
i ∈ I
∣∣∣xi < x′i

}
are necessarily

singletons.

Proof. Assume, contrary to the lemma, that there exist x,x′ ∈ S such that xi , x′i
for all i ∈ I. Then, without loss of generality, we generically have that xi > x′i , x j <
x′j and xk < x′k. This yields a contradiction:

1. the empty core property requires that xi + vi < 1 − xi + v j + vk for all x ∈ X
and distinct i, j, k ∈ I;
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2. internal stability requires that x′ 6K x, so that xi + vi ≥ 1 − xi + v j + vk.

Thus, for two internally stable allocations there must, therefore, exist at least
one agent for whom xi = x′i . When these allocations are distinct, x j − x′j =

−
(
xk − x′k

)
, 0, so that W and L as defined above are singletons that exclude

i. �

Intuitively, the empty core property ensures that the loci of allocations at which
one agent is just as powerful as the other two lies outside the set of feasible allo-
cations, X. Internal stability requires that all pairs of allocations in an internally
stable set lie on opposite sides of the balance of power locus equating the power
of W with that of L (q.v. Beardon and Rowat, 2013). Thus, the empty core means
that pairs of allocation that align two agents against one cannot belong to an in-
ternally stable set. The relevant balances of power can therefore only involve two
agents, so that each bilateral comparison requires the indifference of a third agent.

The following lemma generalises Jordan and Obadia (2015, Lemma 3.5(i))
beyond the symmetric case of v1 = v2 = v3:

Lemma 2. Suppose that S is internally stable in an n = 3 asymmetric majority
pillage game with an empty core. Then S has no more than three elements.

The proof establishes that, under the lemma’s conditions, an internally stable
set cannot contain four allocations. This prevents it having more than four, es-
tablishing the result. Specifically, the proof rules out the possibility of more than
three allocations for which agent i’s share is constant: as the win and lose sets
W and L (both singletons), are constant over such allocations, there cannot – by
axiom SR – be two allocations on one side of the locus of allocations such that
π (W,x) = π (L,x). If there were, one of the sets would be able to enforce a move
from one to the other.10

x y z

π ({2} ,y) = π ({3} ,y)

Figure 1: Collinear, internally stable x,y and z with x1 = y1 = z1

10The proofs of Theorem 2.9 in Jordan (2006) and Theorem 1 of Kerber and Rowat (2011) used
similar reasoning.
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Proof. Consider three points, x,y and z, in an internally stable set S . By Lemma
1, the line running between any two of these must be parallel to the edge of the
simplex X. Without loss of generality, there are two possible configurations:

1. x,y and z are collinear, as depicted in Figure 1, with (wlog) x1 = y1 =

z1, x2 > y2 > z2 and x3 < y3 < z3. As π ({2} ,x) > π ({2} ,y) > π ({2} , z) and
π ({3} ,x) < π ({3} ,y) < π ({3} , z), internal stability requires that π ({2} ,y) =
π ({3} ,y). Now seek to place a distinct w ∈ S :

(a) it cannot be that w1 = x1 as this would leave w with another allocation
on the same side of the balance of power locus between agents 2 and
3 (q.v. Figure 1): the more extreme of those two allocations would
dominate the other (Beardon and Rowat, 2013).

(b) it cannot be that w1 , x1. By Lemma 1, this would require both that
w2 = x2 and w3 = y3 and that w and z share a coordinate. This latter
condition cannot be fulfilled: w1 , x1 = z1; w2 = z2 ⇒ x2 = z2, a
contradiction; w3 = z3 ⇒ y3 = z3, again a contradiction.

w2 = x2 w3 = y3

t1

t2 t3

x
y

z

Figure 2: Triangular, internally stable x,y and z with x1 = y1, y2 = z2 and z3 = x3

2. x,y and z are triangular, as depicted in Figure 2, with x1 = y1, y2 = z2, z3 =

x3. Again, seek to place a distinct w ∈ S :

11



(a) w cannot lie on any of the three lines passing through any two of x,y
and z as this would return us to the second subcase, above. This rules
out w1 = x1, w2 = y2 or w3 = z3.

(b) by the previous subcase, we are only left with w2 = x2, the dotted line
passing through x in Figure 2. By Lemma 1, there must be an agent
i , 2 such that wi = yi. It cannot be i = 1: if w1 = x1 then, as x1 = y1

in this case, it would follow that w = x. This requires w3 = y3, the
dotted line through y in Figure 2. Finally, Lemma 1 forces w1 = z1.
We shall now see that this forces a contradiction:

w1 + w2 = z1 + x2 by the implications of Lemma 1 derived above;
= 1 − w3 by feasibility of w;
= 1 − y3 by the implication of Lemma 1 derived above;
= y1 + y2 by feasibility of y;
= x1 + z2 by the definition of this case.

The right hand sides of the first and last lines allow us to define

k ≡ x1 − x2 = z1 − z2.

As w and z are feasible,

x1 + x2 + x3 − k = z1 + z2 + z3 − k ⇒ 2x2 + x3 = 2z2 + z3

where the implication follows from the definition of k. As this case
requires x3 = z3, the previous equality forces x2 = z2, so that x = z,
the contradiction.

We have therefore eliminated the possible configurations for four allocations in an
internally stable set. This also disallows more than four such allocations, estab-
lishing the result. �

Figure 2 illustrates the lemma’s second case: once x,y and z are placed, in
a triangle, there is no place for a distinct w that shares a coordinate with each of
them.

Definition 3. Let si j be the allocation that splits the resource equally between
agents i and j, so that si j

i = si j
j =

1
2 .

Thus, unlike the bi j previously defined, the si j need not balance power.
Then:

Lemma 3. Suppose that S is stable in an n = 3 asymmetric majority pillage game
with an empty core. Then S =

{
s12, s13, s23

}
.
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Proof. The largest possible S contains, by Lemma 2, three elements, {x,y, z}.
Consider that possibility first.

By Lemma 1, there are again two possible configurations of three internally
stable allocations:

1. linear, so that (wlog) x̄ ≡ x1 = y1 = z1, as in Figure 1. Further, let x2 >
y2 > z2, so that x3 < y3 < z3. It follows that x = (x̄, 1 − x̄, 0). Were it
otherwise, there would exist a feasible x′ with x′2 > x2, x′3 < x3 and x′1 = x̄.
External stability requires it to be dominated by one of x,y and z. All three
possibilities require the same conditions:

π
(
{3} ,x′

)
> π
(
{2} ,x′

)
⇔ x′3 + v3 > x′2 + v2.

However, internal stability’s requirement that y 6K x implies x3 + v3 ≤

x2 + v2, contradicting — by definition of x′ — the above inequality.

Similar reasoning establishes that z = (x̄, 0, 1 − x̄).

Now consider x′′ ≡ 1
2 (y + z) + (ε, 0,−ε) for small ε > 0. (As x,y and z

are distinct, x1 < 1 so that x′′ ∈ X.) None of x,y and z dominate x′′:

(a) for z to dominate x′′, it must be that π ({3} ,x′′) > π ({1, 2} ,x′′). As,
by the empty core property, this inequality does not hold even at t2, it
cannot – by axiom SR – hold at x′′ either.

(b) for x or y to dominate x′′, it must be that π ({2} ,x′′) > π ({1, 3} ,x′′).
The same reasoning as in the previous case excludes this.

Thus, this case fails to satisfy external stability.

2. triangular. We first establish that each of the three allocations must set one
component to zero. Suppose otherwise, so that x > 0, with x1 = y1, y2 = z2,
and z3 = x3, as in Figure 2. Then there exists a feasible x′′′ ≡ x+ (ε,−2ε, ε)
for small ε > 0. This is undominated by x,y or z.

First consider x 6K x′′′: let W ≡
{
i
∣∣∣xi > x′′′i

}
= {2} and L ≡

{
i
∣∣∣x′′′i > xi

}
=

{1, 3}, so that x K x′′′ requires

x′′′2 + v2 > x′′′1 + v1 + x′′′3 + v3.

An empty core implies that 1 + v2 < v1 + v3 which — as x′′′2 ≤ 1 and
x′′′1 + x′′′3 ≥ 0 — contradicts the previous domination inequality.

Establishing that neither y K x′′′ nor z K x′′′ makes use of a case distinc-
tion:
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(a) In addition to the above, let x2 < y2 = z2. In this case, demonstration
that y 6K x′′′ and z 6K x′′′ is identical: both set W = {2} and L = {1, 3},
and both lead – following calculations like those for x 6K x′′′ – to
contradiction.

(b) Now let x2 > y2 = z2. Then, for y 6K x′′′, W = {3} and L = {1, 2},
yielding the same type of contradiction as before. For z 6K x′′′, W =
{1} and L = {2, 3}, but a contradiction is again produced in the same
way.

By Lemma 1, we need only consider two types (without loss of generality)
of triangular configurations; as just established, at least one component of
each allocation must be zero, leaving:

(a) x = (a, 0, 1 − a) ,y = (a, 1 − a, 0), and z = (0, 1 − a, 1 − a), so that –
by the resource constraint – a = 1

2 . This is
{
s12, s13, s23

}
, the lemma’s

result.

(b) x = t1,y = t2 and z = t3. This, however, cannot satisfy external
stability as, for any internal feasible allocation, only one agent benefits
from a move to one of the tyrannical allocations, while two lose. As
the core is empty, this cannot allow dominance.

Now consider the possibility that S contains only two elements. This suffers
from the same failure of external stability as the linear case considered above, so
may be eliminated.

Finally, an S that contains only a single element is even less able to satisfy
external stability than one containing that element and a second, a case which we
have just eliminated. �

To summarise the proof, Lemma 1 leaves two possible configurations for a
three-element stable set, the linear and the triangular. Linear sets of three elements
necessarily fail to dominate some allocations lying off their line, violating external
stability. Each allocation in a triangular configuration must set at least one term
to zero: if not, the allocations will leave undominated some more extremal alloca-
tions; the equal split configuration then also ensures that the allocations between
them are dominated.

The main result of this section generalises Jordan and Obadia (2015, Theorem
3.7) beyond the symmetric case:

Theorem 2. For an n = 3 asymmetric majority pillage game with an empty core,
va ≤

1
2 + vc is necessary and sufficient for internal stability of S =

{
s12, s13, s23

}
.

Empty core condition (7) suffices for the external stability of S , leaving it the
unique stable set when it is internally stable.
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Proof. By Lemma 3, the only candidate stable set is S =
{
s12, s13, s23

}
.

Internal stability requires that no allocation in S dominates any other. Thus,
internal stability implies vi ≤

1
2 + v j for all i and j. By inequality (3)’s ordering

of va, vb and vc, this is equivalent to va ≤
1
2 + vc, the lemma’s stated inequality.

Now establish the other direction, that this inequality implies internal stability,
thus preventing even the easiest possible domination fails within S fails. By the
resource monotonicity axioms, it must be that sab 6K sbc: the agent with the great-
est intrinsic strength (but no resources) cannot defeat that with the least intrinsic
strength (but with half the resources); this is equivalent to the lemma’s inequality.

External stability requires that each x ∈ X\S is dominated by an s ∈ S . For
any such x there are distinct agents such that x j, xk <

1
2 . Further, by inequality

(3), empty core inequality (7) implies that 1+ vi < v j + vk for these agents j and k.
As xi ≤ 1 and x j, xk ≥ 0, it follows that xi + vi < x j + v j + xk + vk, so that s jk K x,
establishing external stability. �

This result generalises that in Jordan and Obadia (2015), the symmetric case,
when n = 3. It may be surprising that the allocations in the stable set do not vary
with vi until the set ceases to exist. Intuitively, the empty core condition limits the
relative strength of the intrinsically strongest agent. This prevents any single agent
overpowering the other two for any allocation. As a result, the only power contests
that must be considered are those between singleton coalitions. The theorem’s
bound on relative power ensures that the intrinsically least powerful agent with
half of the resource can defend itself against the most powerful with none of the
resource. Thus, power need not be equally balanced at the si j allocations: while
va increases relative to vc, there is no distortion in S until the asymmetry becomes
too large, and internal stability fails completely.

4 The non-empty core
This section derives the stable sets (if any) corresponding to each of the possible
non-empty cores identified in Corollary 1.

As the core must be included in any stable set, the proofs follow a similar pat-
tern: the core seeds a candidate stable set; the allocations dominated by the core
are excluded from consideration; over the remaining allocations (often just loci) it
is as if the core is empty, allowing the use of techniques from the previous section.
Of particular importance is the locus of allocations along which the most intrin-
sically powerful agent, a, is just as powerful as the other two, b, c; we prove that
the existence of a stable set on X requires existence a stable set along that locus.
When non-existence arises, it is for the same reason identified in the symmetric
case in Rowat and Kerber (2014): allocations on these loci are only dominated by
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more extreme ones; thus, external stability requires including the most extreme al-
locations in a stable set; when these extreme allocations are themselves dominated
by a core allocation, existence fails.

Before proceeding, we present versions of Lemmas 1 and 2 that apply to the
non-empty core case:

Lemma 4. Suppose that S is internally stable in an n = 3 asymmetric majority
pillage game with a non-empty core K. If x belongs to S \K and x′ belongs to S ,
then there exists an i ∈ I such that xi = x′i .

Proof. For all x ∈ S \K, it holds that xi + vi < 1 − xi + v j + vk for any labeling of
agents i, j and k. The rest of the proof follows that of Lemma 1. �

Lemma 5. Suppose that S is internally stable in an n = 3 asymmetric majority
pillage game. Then the maximal number of allocations in S is three plus the
number of allocations in K, the core.

Proof. For all the elements in S \K, the proof of Lemma 2 applies, setting an
upper bound of three non-core allocations in S . As inclusion of core elements
makes the internal stability requirement on S more demanding, the upper bound
on S cannot be more than three plus the number of core allocations. �

The following lemma helps establish the result that existence of a stable set on
X requires the existence of a stable set on the balance of power locus

B (i) ≡ {x ∈ X |π ({i} ,x) = π ({ j, k} ,x) } (17)

when B (a) , ∅:

Lemma 6. Consider an n = 3 asymmetric majority pillage game with non-empty
core, and B (a) , ∅. Then x ∈ B (a) ⇒ @y ∈ X\B (a) such that ya < xa and
y K x.

Proof. Suppose that such a y does exist and define W ≡ {i ∈ I |yi > xi } and L ≡
{i ∈ I |yi < xi } in the usual way.

As ya < xa, it follows that {a} ⊆ L, which implies π ({a} ,x) ≤ π (L,x).
Similarly, W ⊆ {b, c} implies that π (W,x) ≤ π ({b, c} ,x). Together, these imply
(by equality (17) defining B (a), to which x belongs) that π (W,x) ≤ π (L,x) ⇒
y 6K x, establishing the result. �

Corollary 2. In an n = 3 asymmetric majority pillage game with non-empty core,
and B (a) , ∅, the existence of a stable set on X requires the existence of a stable
set on B (a).
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Proof. A non-empty core must, by Theorem 1, contain ta. This, as previously
argued, must be part of any stable set that exists, preventing allocations in D (ta)
belonging to such a set. This leaves the allocations in x ∈ B (a) and those y such
that ya < xa to consider. By Lemma 6, the x ∈ B (a) are undominated by the y.

Thus, for a stable set on X to satisfy external stability, it must be that external
stability holds on B (a): for any x′ ∈ B (a) that does not belong to S , there must
be an x ∈ B (a) such that x K x′. As stability of S also requires internal stability,
then internal stability must also hold over the elements of S that are also in B (a).

�

Define

xa ≡
1
2

(1 − va + vb + vc) ; (18)

ea
b ≡ (xa, 1 − xa, 0)

so that any x with ath component xa belongs to B (a), and ea
b is an extremal mem-

ber of B (a), maximising xb by setting xc = 0.

Corollary 3. Consider an n = 3 asymmetric majority pillage game with non-
empty core and B (a) , ∅. Then, if a stable set S exists, ea

b ∈ S .

Proof. Under the stated conditions, there does not exist an x′ ∈ B (a) such that
x′ K ea

b. Consider otherwise: as x′ K ea
b is equivalent to π

(
{c} , ea

b

)
> π
(
{b} , ea

b

)
,

it is equivalent to
0 + vc > 1 − xa + vb.

This cannot hold with strict inequality: xa ∈ [0, 1) ensures that 1 − xa ≥ 0 and
inequality (3) ensures that vb ≥ vc.

As no other allocation on B (a) dominates ea
b, Corollary 2 requires that, if S

exists, it must contain ea
b. �

Corollary 4. Consider an n = 3 asymmetric majority pillage game with non-
empty core and B (a) , ∅. Then xa < 1 and vc > 0 imply that no stable set
exists.

Proof. By Corollary 3, ea
b must belong to any stable set under the conditions of

this corollary.
As ea

b ∈ B (a) it satisfies π
(
{a} , ea

b

)
= π
(
{b, c} , ea

b

)
or, equivalently, xa + va =

(1 − xa) + vb + vc > (1 − xa) + vb where the inequality results from the corollary’s
condition that vc > 0.

If the core is non-empty, then — by Theorem 1, it must contain ta. However,
ta K ea

b as
xa + va = (1 − xa) + vb + vc > (1 − xa) + vb;
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where the equality follows from the definition of B (a), to which ea
b belongs, and

the inequality follows from the corollary’s condition that vc > 0. Internal stability
of S cannot, therefore, be satisfied, yielding the result.

The corollary’s inequality restriction on xa ensures that ea
b , ta. �

Proofs for the following results are largely moved to the appendix.

4.1 The singleton core, K = {ta}

When the inequalities in (8) hold, the core consists of ta only.

Theorem 3. Consider an n = 3 asymmetric majority pillage game satisfying in-
equalities (8):

1. if va > vb + vc + 1, then the unique stable set is S = {ta}.

2. if va ∈ vb + vc + (−1, 1], then no stable set exists.

3. if va = vb + vc − 1, then no stable set exists.

4.2 K =
{
ta, tb

}
This case is defined by the parameter restrictions in (9) and (10).

Theorem 4. Consider an n = 3 asymmetric majority pillage game satisfying con-
ditions (9) or (10). Then:

1. if condition (10) holds and va ≥ 2, then the unique stable set is S = K ={
ta, tb
}
.

2. if condition (10) holds and va ∈ (1, 2), then no stable set exists.

3. if condition (9) holds then no stable set exists.

4.3 K =
{
ta, tb, bab

}
This case is defined by the parameter restrictions in (11).

Theorem 5. Consider an n = 3 asymmetric majority pillage game satisfying con-
ditions (11):

1. when vb ≥
1
3 (1 + va), the unique stable set is the core itself;

2. otherwise no stable set exists.
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4.4 The tyrannical core, K =
{
ta, tb, tc

}
This case is defined by the parameter restrictions in (12) and (13).

Theorem 6. Consider an n = 3 asymmetric majority pillage game satisfying ei-
ther condition (12) or condition (13).

1. when condition (12) holds, no stable set exists unless va = vb = vc = 1, in
which case the unique stable set is S = K∪

{
bab, bac, bbc

}
= K∪

{
sab, sac, sbc

}
.

2. when condition (13) holds, the unique stable set is S = K∪
{
bbc
}
=
{
ta, tb, tc, bbc

}
={

ta, tb, tc, sbc
}
.

4.5 K =
{
ta, tb, tc, bab

}
This case is defined by the parameter restrictions in (14).

Theorem 7. In an n = 3 asymmetric majority pillage game satisfying conditions
(14), no stable set exists unless va = vb =

1
2 . In that remaining case, the unique

stable set is the core.

4.6 K =
{
ta, tb, tc, bab, bac

}
This case is defined by the parameter restrictions in (15).

In these cases, define the midpoint of a balance of power locus, mi ∈ B (i) so
that

mi
i =

1
2

(1 − vi) ,mi
j = mi

k =
1
4

(1 + vi) . (19)

Theorem 8. In an n = 3 asymmetric majority pillage game satisfying conditions
(15):

1. when va ≥
1
3 , the unique stable set is K ∪ {ma};

2. otherwise no stable set exists.

4.7 K =
{
ta, tb, tc, bab, bac, bbc

}
This case is defined by the equalities in (16), which set bi j = si j. Thus, this is the
symmetric wealth is power case defined in Jordan (2006), which also derived its
stable set for any n. In the present n = 3 case, the result — illustrated in Figure 3
— reduces to:
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Theorem 9. Jordan (2006, Theorem 3.3) In the n = 3 wealth is power pillage
game with vi = 0 for all i = 1, 2, 3, the unique stable set is

S =
{
t1, t2, t3, b12, b13, b23,m1,m2,m3

}
.

D
(
t1
)

D
(
s23
)

t2 t3

t1

b23

b12 b13ma

Figure 3: Wealth is power: π (C,x) =
∑

i∈C xi

5 Discussion
This paper removes the symmetry (or anonymity) assumption usually assumed
in analysis of pillage games. It is motivated by a hope of identifying a tractable
class of pillage games to allow empirical tests of this theory of unstructured power
contests.

It finds, first, that stable sets are unique — when they exist — in three agent
asymmetric majority pillage games. MacKenzie, Kerber, and Rowat (2015) demon-
strated that violating the anonymity axiom could lead to multiple stable sets in
majority pillage games when the number of agents was at least four. This paper
therefore establishes that as a lower bound for multiplicity in asymmetric majority
pillage games.
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Second, it suggests a link between linear power functions and winner(s) ‘take
all’ contests: the only case in which the stable set contains interior allocations,
x > 0, are the special cases of 1 ≥ va ≥ vb = vc = 0. This reflects the tension
between existence of a stable set and strictly interior allocations along balance
of power loci: when there is an interior allocation at which the two contestants’
power is balanced along such a locus, its extremal elements must also belong to a
stable set; if, though, the relevant vi > 0, these elements may be dominated by a
tyrannical allocation, preventing existence.

Third, it finds that non-existence is pervasive. Thus, the theory fails to deliver
testable predictions for non-negligible sets of values of v1, v2 and v3.

Tantalisingly, the theory yields predictions for almost the full range of cases in
which va ≥ vb = vc = 0 — so that agent a has some source of intrinsic power that
b and c do not. This power could arise from greater internal cohesion, a structural
advantage (e.g. perhaps being located more centrally). Figure 4 illustrates, with
va increasing from 0 in the leftmost diagram to va > 1 in the rightmost. Filled dots
represent allocations in a stable set.

ta

tb tc

bab
D (ta)

(a) va = 0

bab

eb
c

D (ta)

(b) 1
3 > va > 0 ta

tb tc

bab
ma

eb
c

D (ta)

(c) 1 > va ≥
1
3

ta

tb tc
ma

bbc

D (ta)

(d) va = 1 ta

D (ta)

(e) va > 1

Figure 4: Stable sets when va ≥ vb = vc = 0

When va = 0, the fully symmetric case depicted in diagram 4a, a stable set
exists with interior allocations, as per Theorem 3.3 of Jordan (2006). As va in-
creases, D (ta) reaches further into the simplex, as depicted in diagram 4b, so that
bab no longer dominates the extremal eb

c; no stable set exists, as per the second
case in Theorem 8. When va grows beyond 1

3 (q.v. diagram 4c), bab comes to
dominate all allocations to the extremal eb

c; this allows the stable set in the first
case of Theorem 8. When va = 1, D (ta) pushes further down, dominating the
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whole simplex except its bottom margin (as depicted in diagram 4d); now the sta-
ble set in the second case of Theorem 6 exists. Finally, when va > 1, depicted in
diagram 4e, ta dominates the whole simplex, leaving it the singleton stable set, as
per the first case of Theorem 3.

In conclusion, we mention three possible ways forward for an empirically-
testable theory of pillage games.

First, production could be considered, so that assigning an agent nothing in-
efficiently excludes its production function from society. In the terminology of
Olson (1993), production provides an incentive for bandits to be stationary rather
than roving. Any study of production in pillage games should build on Jordan
(2009), which gave each agent in a pillage game a production function for con-
verting wealth into consumption goods. While production could be expected to
favour interior allocations, it is less obvious that they would rescue existence.

Second, the tension between existence and interior allocations arises in part
because the balance of power loci (such as the dashed lines in Figure 7) are linear:
interior allocations like x and y do not dominate their neighbours as the loci
restrict power contests to those pitting one agent against another. However, a
power function like

π (C,x) =
∑
i∈C

(√
xi + vi

)
;

generates curved balance of power loci which allow the third agent (who would be
indifferent along a linear balance of power locus) to benefit from moves towards
the centre of the locus. Its involvement allows central allocations to dominate the
extremes of the locus, rescuing existence and yielding strictly interior solutions.
Figure 5 illustrates the symmetric special case in which vi = 0 for all agents.

Third, solution concepts other than the stable set can be experimented with.
In addition to the usual cooperative solution concepts, it would make sense to
study the legitimate set, which extended the stable set to production pillage games
(Jordan, 2009). Chaturvedi (2016) has applied farsighted concepts from Chwe
(1994) to pillage games.
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A Proofs
Proof of Theorem 3. Consider each case in turn:

1. The case’s characterising inequality implies that xa < 0. By inequalities (8),
the game’s core is the singleton ta. The additional inequality ensures that ta

dominates any allocation splitting the entire resource between the other two
agents which – by axiom SR – is the most demanding allocation for ta to
dominate. Thus, D (ta) = X\ {ta}. This ensures that {ta} is externally stable.

Internal stability is trivial as {ta} is a singleton.

The ensuing stable set is unique as ta must – as a core allocation – belong
to any candidate stable set; once it is included, there is no further room for
discretion.

2. The case’s characterising inequality implies that xa ∈ [0, 1). It further im-
plies vb > 0: if vb = 0, then this would force vc = 0, reducing the case
condition to va ≤ 1, while the second inequality in (8) requires va > 1, a
contradiction.

Now consider the locus of allocations, B (a), defined in equation (17) un-
der the case’s parameter restrictions. The parameter restrictions ensure that
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xa ≥ 0 for those x ∈ B (a), with xa attaining its lower bound when the case’s
inequality in va holds with equality.

By Corollary 2, existence of an S depends on the existence of a stable set
on B (a). Let the allocation at the other extreme of B (a) than ea

b be ea
c =

(xa, 0, 1 − xa). Then ea
b K ea

c ⇔ va < 3vb − vc − 1, yielding two subcases to
consider:

(a) va ≥ 3vb − vc − 1. In this case, no allocation y ∈ B (a) dominates ea
c .

Thus, the reasoning that held for ea
b in Corollary 3 holds here for ea

c:
ea

c must belong to any candidate stable set, but the case’s implication
that vb > 0 ensures that ta K ea

c , ruling out existence.
(b) va < 3vb − vc − 1. Now ea

b dominates all other allocations on B (a), so
that
{
ea

b

}
is a stable set on B (a). There are two sub-cases to address:

i. va = vb + vc + 1 ⇔ xa = 0, which implies — by definition of xa

— that va = vb + vc + 1. Together with the second inequality (8),
this implies that vc > 0 which, by Corollary 4 rules out existence.

ii. va ∈ vb + vc + (−1, 1) ⇔ xa ∈ (0, 1). When vc > 0, Corollary 4
again rules out existence, leaving the case of vc = 0. This reduces
the second inequality (8) to va > vb + 1 while xa > 0 implies
va < vb + 1. This contradiction rules out existence here as well.

3. va = vb+vc−1⇔ xa = 1, so that B (a) = {ta}. In this case, analysis proceeds
as in the ‘empty core’ case, but over X\ {ta} rather than over X. There are
two sub-cases:

(a) vb >
3
2 , in which case the only candidate stable set over the empty core

(by Lemma 3) fails to be internally stable (by Theorem 2). Thus, no
stable set exists.

(b) vb ≤
3
2 , in which case the only candidate stable set over the empty core

(by Lemma 3) is both internally and externally stable (by Theorem 2).
Thus, the unique candidate stable set is

{
ta, sab, sac, sbc

}
. However,

internal stability also requires that ta 6K sac, which reduces to va ≤ vc,
only possible when va = vb = vc — contradicting inequalities (8).

�

Proof of Theorem 4. Before considering the cases, note that

D (ta) ⊇ {y ∈ X |π ({a} ,y) > π ({b, c} ,y) } = {y ∈ X |ya > xa } . (20)

Additionally, recall that core allocations, here ta and tb, must belong to any stable
set.

Now consider the cases in turn:
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1. Under the conditions in (10), B (a) = {x ∈ X |xa = 0 } so that D (ta) includes
{y ∈ X |ya > 0 }. As ta must belong to any stable set, and D (ta) cannot (by
internal stability), we may restrict our attention to those y ∈ X such that
ya = 0. One such allocation, tb, must also belong to any stable set. Of the
remaining allocations with ya = 0:

tb K y ⇔yb + vb > 1 − yb

⇔2yb + va > 2;

where the second equivalence follows from inequalities (10). The va ≥ 2
condition assumed in this case ensures this holds for all yb > 0. When
yb = 0, then y = tc; as va ≥ 2 ensures that ta K tc, all allocations such that
ya = 0 are dominated either by ta or tb, concluding the proof for this case.

2. As in the previous case: B (a) = {x ∈ X |xa = 0 }. By Corollary 2, existence
of a stable set on X requires existence of such a set on B (a). As tb ∈

B (a) belongs to the core, it must also belong to any stable set on B (a). By
the case’s assumption that va ∈ (0, 1), bbc =

(
0, 1 − 1

2va,
1
2va

)
lies strictly

between tb and tc, as depicted in Figure 6. As, by definition, bbc
b + vb =

bbc
c + vc, tb dominates all allocations in the interior of the interval between

tb and bbc. Thus, whether allocations in the interval
[
bbc, tc

]
belong to S

must be decided.

As va > 1 > vc = 0, ta K tc, leaving membership of allocations in the in-
terval

[
bbc, tc

)
to be decided. As any such allocation, say x = (0, xb, 1 − xb)

is dominated by an allocation to its right, x + (0,−ε, ε) for small ε > 0, the
rightmost such allocation must belong to S to satisfy external stability. As
the interval is open at tc , this is impossible, yielding — by Corollary 2—
the case’s non-existence result.

3. To analyse this case, recall the locus of allocations x ∈ B (a) with xa as
defined in equation (18). Then:

(a) xa = 0 is impossible, as it requires vc ≤ 0 and vc > 0 from inequalities
(9).

(b) xa = 1 yields the ‘empty core’ analysis of case 3 of Theorem 3, and
the same contradictory requirement that va = vb = vc. Again, this
yields non-existence.

(c) xa > 1 is also impossible, as it implies that π ({a} , ta) < π ({b, c} , ta),
which is incompatible with ta ∈ K.

The only remaining case to consider is therefore xa ∈ (0, 1). As inequalities
(9) require vc > 0, non-existence of S is immediate by Corollary 4.
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tc

D (ta) = {x ∈ X |xa > 0 }

tb

ta

bbc

Figure 6: Constructing the stable set when K =
{
ta, tb
}

These cases are exhaustive: when conditions (10) hold, va must be strictly
greater than one as vb = va − 1 is strictly positive. �

Proof of Theorem 5. Recall that, by equation (6), bab
a =

1
2 (1 − va + vb). The in-

equalities in vb in (11) ensure that bab is distinct from both ta and tb, so that
bab

a ∈ (0, 1). As the core must belong to any stable set, we can exclude the follow-
ing from any stable set:

D (ta) ⊇
{
y ∈ X

∣∣∣∣ya ∈
(
bab

a , 1
)}

;

D
(
tb
)
⊇

{
y ∈ X

∣∣∣∣yb ∈
(
1 − bab

a , 1
)}

;

D
(
bab
)
⊇
{
y ∈ X

∣∣∣ya < bab
a and yb < 1 − bab

a

}
.

Only two loci remain to be considered, namely B (a) \
{
bab
}

and B (b) \
{
bab
}
.

Along each of these, the power contests induced oppose a single agent against
another single agent: agent b versus c in the first case, and a versus c in the second.
If the former is strictly more powerful than the latter for any such allocation, then
those allocations are all dominated by bab, so that the core itself satisfies external
stability, and is the unique stable set.
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D
(
tb
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D (ta)

D
(
bab
)

tb

bab

ta

x ∈ B (a)

y ∈ B (b)

Figure 7: Constructing the stable set when K =
{
ta, tb, bab

}
We proceed by case analysis on the relative size of vb and 1

3 (1 + va):

1a. vb >
1
3 (1 + va), as illustrated in Figure 7. Let x be the allocation in B (a)

such that b and c are equally powerful. As xa = bab
a , the resource constraint

forces xb + xc = 1 − bab
a . The balance of power requirement itself is that

xb + vb = xc. Together with the definition of bab
a from equation (6), these

allow solution for xb =
1
4 (1 + va − 3vb). Thus, in this case, xb < 0, so that

bab dominates all allocations in this locus.

Now let y be the allocation in B (b) such that a and c are equally pow-
erful. The resource constraint forces ya + yc = bab

a while the balance of
power requirement is that ya + va = yc. Together, these allow solution for
ya =

1
4 (1 − 3va + vb), so that bab dominates all allocations in this locus iff

va >
1
3 (1 + vb). This is automatic when the case’s characterising inequality

holds:
vb >

1
3

(1 + va) ≥
1
3

(1 + vb)⇒ vb >
1
2

;

where the second inequality follows from (3). By the same inequality and
the preceding, it follows that va >

1
2 ⇒ va >

1
3 (1 + vb), so that bab dominates

all other allocations in B (b).
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In conclusion, when the case’s characterising inequality holds, bab is the
unique stable set on B (a) so that, by Corollary 2, it must also belong to
any candidate stable set on X. As it also dominates all allocations on
B (b) \

{
bab
}
, the core is the uniquely stable set under these conditions.

1b. vb =
1
3 (1 + va) > 0. Now the x such that b and c are equally powerful sets

xb = 0. Thus, this allocation is not dominated by bab but by ta as

va + xa = vb + vc + xb + xc = vb + 0 + 0 + (1 − xa) > 1 − xa;

where the inequality follows from vb > 0.

Again, let y ∈ B (b) such that a and c are equally powerful. As in the
previous case, we may derive

ya =
1
4

(1 − 3va + vb) =
1
3

(1 − 2va) ≤ 0.

where the last equality derives from the case’s characterising condition. The
inequality derives from va ≥ vb =

1
3 (1 + va). Then:

(a) ya < 0 means that bab dominates all other allocations in B (b). As this
accounts for the last allocations in X, the core is the unique stable set.

(b) ya = 0, which forces va = vb =
1
2 , so that bab

a =
1
2 . Then

tb K y ⇔
1
2
+ yb > yc.

As ya = 0, yb = yc =
1
2 , so that this holds. Again, all remaining allo-

cations in X have been accounted for, leaving the core as the unique
stable set.

2. vb <
1
3 (1 + va) implies that the x ∈ B (a) such that agents b and c are

equally powerful is strictly in the interior of X. As x is not dominated by
any core allocation, nor by any other allocation setting xa = bab

a , it must
belong to any stable set that exists. Allocations z along the locus but with
zb < xb are undominated by x or any core allocation, but are dominated by
allocations along the locus granting agent b even less than zb. However, the
end-point of that locus, which grants agent b nothing, is dominated by ta.
By Corollary 4, as no stable set exists on B (a), no stable set can exist on X.

�

Proof of Theorem 6. Consider the cases in turn:
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1. when condition (12) holds, the cases in xa — as defined in equation (18) —
to consider are:

(a) xa = 0, which implies va = 1 + vb + vc; as the first inequality in (12)
requires va ≤ 1− vb + vc they together require that vb ≤ 0, which — as
vb ≥ vc > 0 — contradicts the second inequality in (12).

(b) xa > 1: inequalities (3) and the first inequality in (12) imply that
va ≥ vb + vc − 1. As xa > 1 implies va < vb + vc − 1, this yields a
contradiction.

(c) xa = 1, which implies that va = vb + vc − 1. As va ≥ vb ≥ va + vc − 1,
it follows that: vc ≥ 1 and vc ≤ 1 (so that vc = 1) and vb ≥ va (so
that vb = va). Finally, the preceding and the first inequality (12) imply
that va ≤ 1 so that va = vb = vc = 1. This returns us to the ‘empty
core’ analysis, now on X\

{
ta, tb, tc

}
. By Lemma 3) and Theorem 2,

the unique candidate stable set is
{
ta, tb, tc, bab, bac, bbc

}
, as bi j = si j in

this case; as va ≤
1
2 + vc, it is the unique stable set.

(d) xa ∈ (0, 1), so that Corollary 4 applies, ensuring non-existence of S .

2. when condition (13) holds, D (ta) ⊇ {y ∈ X |ya ∈ (0, 1) }. As ta must be
included in a candidate stable set, and D (ta) must be excluded, we need
only consider the remaining allocations, such that xb, xc > 0 = xa. As
vb = vc = 0, it follows that bbc =

(
0, 1

2 ,
1
2

)
= sbc. Further, all the remaining

y other than sbc are dominated by either tb or tc, so are excluded from
a candidate stable set. Thus, the only allocation not accounted for is sbc

which must therefore be added to the stable set to satisfy external stability.

�

Proof of Theorem 7. As the proof closely follows that of Theorem 5, we present
it here by explaining how it differs from its predecessor.

Now four sets can be excluded from any stable set: the previous three and
D (tc) as well. This leaves a third locus that remains to be considered, namely
B (c) \bab.

The same case distinction helps analyse allocations in B (a) \
{
bab
}
:

1a. vb >
1
3 (1 + va). This case is now impossible:

va ≥ vb >
1
3

(1 + va)⇒ va >
1
2

;

1 − va ≥ vb >
1
3

(1 + va)⇒ va <
1
2

;
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with the first line’s weak inequality coming from inequalities (3) and the
second line’s coming from conditions (14).

1b. vb =
1
3 (1 + va). This reduces the two sets of inequalities in the previous

case to va = vb =
1
2 , which forces ya = 0. That, in turn, implies tb K y.

It remains to account for the allocations in B (c), which we do now. Let xc

play the same role in x ∈ B (c) as xa did in x ∈ B (a):

B (c) = {(xa, xb, xc) ∈ X |π ({c} ,x) = π ({a, b} ,x) }

so that xc = 1 − xc + va + vb ⇒ xc ≤ 1. Consider each sub-case in turn:

(a) xc = 1, so that va + vb = 1 ⇒ va = vb =
1
2 and B (c) = {tc}. As tc al-

ready belongs to the core, this accounts for the remaining allocations:
the unique stable set is the core.

2. xc < 1, so that va + vb < 1. By the case’s equality in vb, this reduces
to va <

1
2 . However, the case’s equality and inequality (3) yield vb =

1
3 (1 + va) ≤ va ⇒ va ≥

1
2 , a contradiction which eliminates this case.

1. vb <
1
3 (1 + va). This case produces non-existence for the same reason as in

Theorem 5.

�

Proof of Theorem 8. Figure 8 illustrates the proof’s construction.
As before, the core allocations belong to any candidate stable set; the strict

interiors of their dominions cannot; thus, we need only consider the B (a) and
B (b) loci (by symmetry).

First consider B (b). By the usual arguments (including Corollary 2), alloca-
tions on B (b) must either be members of any stable set, or be dominated by other
allocations on B (b).

As dominance along B (b) is determined by conflict between agents a and
c, then — by resource monotonicity — ba

b K eb
c implies that ba

b dominates all
other allocations along B (b). This dominance condition is equivalent to va >
1
2 (1 − va) ⇔ va >

1
3 . Thus, when va >

1
3 , the core allocation ba

b is the unique
stable set on B (b).

The case of va =
1
3 is similar: now bab dominates all other allocations in B (b)

except for eb
c . However, this last allocation is dominated by the core allocation tb:

tb K eb
c ⇔ xb > xc ⇔

1
2

(1 + va) >
1
2

(1 − va)⇔ va > 0;

which is guaranteed by inequalities (15).
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Thus, when va ≥
1
3 , all non-core allocations along B (b) (and, by symmetry,

B (c)) are dominated by a core allocation. This leaves B (a). Again, by Corollary
2, for a stable set to exist on X, its restriction to B (a) must also be stable; by
Corollary 3, this must include ea

b = bab and ea
c = bac. Their inclusion dominates

all other allocations in B (a) except for ma. Thus, the unique stable set on B (a) is{
bab, bac,ma

}
.

This concludes the theorem’s first case, in which va ≥
1
3 yields a unique stable

set, K ∪ {ma}.
In the theorem’s second case, va <

1
3 so that core allocations (e.g. bab and

tb) do not dominate all other allocations on B (b). Thus, by the same reasoning
as in Corollary 3, existence fails: the allocations in B (b) undominated by bab

must be dominated by a maximal allocation at the other extreme of B (b), that is
itself undominated by an allocation in a candidate stable set; as tb K eb

c , such an
allocation does not exist, concluding the proof. �

D (ta)

D
(
tb
)

D (tc)D
(
bab
)

ta

tb tc

bab bacma ∈ B (a)

x

eb
c ∈ B (b)

Figure 8: Constructing the stable set when K =
{
ta, tb, tc, bab, bac

}
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