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Abstract. This paper studies the Nash solution to non-convex bargaining

problems. Given the multiplicity of the Nash solution in this context, we

refine the Nash solution by incorporating an equity consideration. The pro-

posed refinement is defined as the composition of the Nash solution and a

variant of the Kalai-Smorodinsky solution. We then present an axiomatic

characterization of the new solution.
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1 Introduction

Non-convex bargaining problems can arise in many economic contexts of

resource allocations where, for example, due to economies of scale in the

production technology, the underlying set of feasible allocations is itself not

convex, and/or randomization is unavailable due to the lack of correlating

strategies among players. In this paper, we study solutions to such non-

convex bargaining problems. We are particularly interested in a solution

that incorporates both equity and efficiency considerations.

The classical Nash solution (Nash (1950)) to bargaining problems is orig-

inally proposed for convex bargaining problems, though it has been extended

to non-convex problems. For instance, Kaneko (1980) proposes an extension

of the classical Nash solution to non-convex problems as the set of all Nash-

product maximizers from each bargaining problem, whereas Herrero (1989)

proposes a solution that constitutes a superset of the solution proposed by

Kaneko on each non-convex problem, and Conley and Wilkie (1996) propose

a solution which is single-valued, continuous, but only weakly efficient in that

domain. Finally, Zhou (1997) also proposes an extension of the classical Nash

solution which is a single-valued, continuous, efficient, but is not anonymous.

Given these proposals, there are recent axiomatic studies on the Kaneko

type of the Nash solution to nonconvex problems (Marriotti (1998, 1999,

2000), Xu and Yoshihara (2006), and Peters andVermeulen (2012)), and

on the Kalai-Smorodinsky (1975) (KS) solution and the egalitarian solution

(Conley and Wilkie (1991), and Xu and Yoshihara (2006)). These works

suggest that in nonconvex problems, the Nash solution has a greater efficiency

consideration than the KS and the egalitarian solutions while each of the

KS and the egalitarian solutions has a greater equity consideration than

the Nash solution. Among these three, since the KS and the egalitarian

solutions are single-valued, it is impossible to consider a refinement of each

of them to improve their performance in terms of efficiency. In contrast, the

Nash solution a là Kaneko (1980) is multi-valued since, as Mariotti (1998,

1999) shows, there is no single-valued solution satisfying the Nash axioms in

nonconvex problems. Due to this multi-valuedness of the Nash solution, it

would be desirable to consider a refinement of this solution to exclude some
options recommended by it, if in particular such options are deemed to be

undesirable from the viewpoint of distributive fairness.

We propose and study a refinement of the Nash solution to nonconvex

bargaining problems by introducing an equity axiom, called Equity Principle
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(EP) (see Section 5 for a formal definition). The underlying equity idea of

this axiom is originated from the Hammond equity (Hammond (1976)) prin-

ciple, which is taken as a natural and standard equity condition in many

contexts of collective choice problems. Thus, the motivation behind our pro-

posal is to make the proposed refinement select among the Nash maximizers

the ones which have the property of the Hammond equity. The refinement,

namely, the equitable Nash solution, is derived from (EP) and other proper-

ties motivated by the Nash type axioms, and is a composition of the Nash

solution and a variant of the KS solution, in that it selects the maximizers of

the Nash product at the first stage, and then select, among such maximizers,

the outcomes in which the ratios of all players’ utility gains with respect to

their maximum attainable utilities are equalized.1 Given the nature of the

Nash solution to non-convex bargaining problems, it is reasonable for a re-

finement of the Nash solution to adopt an equity concern as embedded in the

KS solution, since the KS solution has the same informational requirement

on individual utilities as the Nash solution does.

The remainder of the paper is organized as follows. In Section 2, we

present notations and definitions. Section 3 introduces a set of our core

axioms and studies their implications on nonconvex problems. Section 4

introduces the new solution, the equitable Nash solution. Section 5 is devoted

to the study of this solution, and we conclude in Section 6.

2 Notation and definitions

Let N = {1, 2, . . . , n} be the set of players with n ≥ 2. Let R+ be the set

of all non-negative real numbers and R++ be the set of all positive numbers.

Let Rn
+ (resp. R

n
++) be the n-fold Cartesian product of R+ (resp. R++).

For any x, y ∈ Rn
+, we write x ≥ y to mean [xi ≥ yi for all i ∈ N ], x > y

to mean [xi ≥ yi for all i ∈ N and x 6= y], and x À y to mean [xi > yi
for all i ∈ N ]. For any x ∈ Rn

+ and any non-negative number α, we write

z = (α;x−i) ∈ Rn
+ to mean that zi = α and zj = xj for all j ∈ N \ {i}. For

any subset A ⊆ Rn
+, A is said to be (i) non-trivial if there exists a ∈ A such

that a À 0, and (ii) comprehensive if for all x, y ∈ Rn
+, [x > y and x ∈ A]

1Note that Conley and Wilkie (1996) propose an “equitable” Nash extension solution

to nonconvex problems, which is taken as a hybrid of the Nash and the KS solutions.

However, their solution is very different from ours proposed in this paper as their solution

does not satisfy the efficiency criterion and is not a refinement of the Nash solution.
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implies y ∈ A. For all A ⊆ Rn
+, define the comprehensive hull of A, to be

denoted by compA, as follows:

compA ≡ ©z ∈ Rn
+ | z ≤ x for some x ∈ A

ª
.

Let Σ be the set of all non-trivial, compact and comprehensive subsets

of Rn
+. Elements in Σ are interpreted as (normalized) bargaining problems.

A problem A ∈ Σ is called simple if there are x, y ∈ A such that A =
comp{x, y}. A bargaining solution F assigns a nonempty subset F (A) of A
for every bargaining problem A ∈ Σ.
Let π be a permutation of N . For all x = (xi)i∈N ∈ Rn

+, and any

permutation π, let π(x) = (xπ(i))i∈N . For all A ∈ Σ and any permutation π,

let π(A) = {π(a) | a ∈ A}. For any A ∈ Σ, we say that A is symmetric if
A = π(A) for all permutations π over N .
For all A ∈ Σ and all i ∈ N , let mi(A) = max{ai | (a1, · · · , ai, · · · , an) ∈

A}. m(A) ≡ (mi(A))i∈N is the ideal point of A.

Definition 1: A bargaining solution F over Σ is the Nash solution if for all
A ∈ Σ, F (A) = {a ∈ A |Qi∈N ai ≥

Q
i∈N xi for all x ∈ A}.

Denote the Nash solution by FN . Note that, for nonconvex bargaining prob-

lems, the Nash solution is typically multi-valued.

3 Basic axioms and their implications

In this section, we present several standard axioms and examine their impli-

cations for solutions to bargaining problems. We begin by introducing three

axioms, Efficiency, Anonymity and Scale Invariance, which are standard in

the literature on Nash bargaining problems.

Efficiency (E): For any A ∈ Σ and any a ∈ F (A), there is no x ∈ A such
that x > a.

Anonymity (A): For any A ∈ Σ, if A is symmetric, then [a ∈ F (A) ⇒
π(a) ∈ F (A) for any permutation π over N ].

Scale Invariance (SI): For all A ∈ Σ and all α ∈ Rn
++, if αA = {(αiai)i∈N |

a ∈ A}, then F (αA) = {(αiai)i∈N | a ∈ F (A)}.
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The axiom (A) is a weak equity condition reflecting the idea of equal

treatment for equals. The axiom (SI) is typically justified in the context

of convex bargaining problems by appealing to the expected utility theory

and the possibility of randomization of actions. However, as Zhou (1997),

Xu and Yoshihara (2006), and Peters andVermeulen (2012) have noted, the

randomization is often unavailable due to the lack of correlating strategies

among players even when players have cardinally measurable utility func-

tions. Such cases correspond to nonconvex bargaining problems where (SI)

can be interpreted as the axiom of “utility-unit invariance”, and/or the ax-

iom of “independence of utility intensities” as discussed in Yoshihara (2003)

and Xu and Yoshihara (2006).

The next axioms represent minimal requirements on bargaining solutions

to exhibit a consistent behavior. The requirements are in the spirit of the

well-known Weak Axiom of Revealed Preference (WARP) used in the theory

of revealed preference (Samuelson (1938, 1947)), but is considerably weaker

than WARP. The standard (WARP) such as defined in Sen (1971) requires

that if an alternative z is “revealed to be worse” than another alternative x in

the sense that there is a problem containing x and z from which x is chosen

but z is not, then z should not be chosen from any problem as a solution as

long as x is available. We propose two much weaker versions of (WARP) in

this paper and are formally stated as follows:

Binary Weak Axiom of Revealed Preference 1 (BWARP1): For all

x, y, z ∈ Rn
+ with y > z, if {x, y} = F (comp {x, y}), then z /∈ F (A) for any

A ∈ Σ with x, z ∈ A.
Binary Weak Axiom of Revealed Preference 2 (BWARP2): For all

x, z ∈ Rn
+, if {x} = F (comp {x, z}), then z /∈ F (A) for any A ∈ Σ with

x, z ∈ A.
(BWARP1) requires that, if an alternative z is “revealed to be worse” than

another alternative x through a “pairwise comparison” involving x and y

where y vectorially dominates z, then z should not be chosen as a solution

as long as x is available. (BWARP2), on the other hand, requires that, if

an alternative z is “revealed to be worse” than another alternative x via

a “pairwise comparison” involving x and z directly, then z should not be

chosen as a solution as long as x is available.

One attractive feature of (BWARP1) and (BWARP2) is their simplicity:

it only involves the information about the solution to one type of simple bar-
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gaining problems. (BWARP1) and (BWARP2) represent a weak property of

rational choice: it can be checked that, if a solution satisfies (E), (BWARP1)

and (BWARP2), then there is an acyclic relation P over Rn
+ such that for

any A ∈ Σ, [x ∈ F (A)⇒ @y ∈ A s.t. yPx].
We now explore the implications of the above axioms that are to be

imposed on a solution to nonconvex bargaining problems. Our result in this

section shows that, when a solution satisfies (A) and (SI), then it satisfies (E),

(BWARP1) and (BWARP2) if and only if it selects from the Nash solution

and coincides with the Nash solution on simple problems.

Proposition 1. Let a solution F satisfy (A) and (SI). Then, the following

two statements are equivalent

(1.1) F satisfies (E), (BWARP1) and (BWARP2),

(1.2) F selects from FN , and coincides with FN on simple problems.

Proof. We first show that (1.1) implies (1.2). For this purpose, suppose that

F satisfies (E), (BWARP1) and (BWARP2). We first establish the following

two statements:

(1.3) ∀x, y ∈ Rn
+:
Q
i∈N xi =

Q
i∈N yi > 0⇒ F (comp {x, y}) = {x, y},

(1.4) ∀x, y ∈ Rn
+:
Q
i∈N xi >

Q
i∈N yi ≥ 0⇒ F (comp {x, y}) = {x}.

Let x, y ∈ Rn
+.

Consider
Q
i∈N xi =

Q
i∈N yi > 0. Choose an appropriate α ∈ Rn

++ such

that αx and αy are permutations of each other (such α always exists because

x and y have the same value of their respective Nash product). Let S ≡
comp {αx,αy}. Then, let T ≡ ∪π∈Ππ (S) where Π is the set of all permuta-
tions of N . By construction, T is symmetric, and {π (αx) ,π (αy) | π ∈ Π} ⊆
T is the set of all efficient outcomes in T . Thus, F (T ) ⊆ {π (αx) ,π (αy) | π ∈ Π},
and let αx ∈ F (T ). Then, by (A), {π (αx) | π ∈ Π} ⊆ F (T ). Also, since
αx and αy are permutations of each other, αy ∈ F (T ) by (A). Then, again
by (A), {π (αy) | π ∈ Π} ⊆ F (T ). Thus, F (T ) = {π (αx) ,π (αy) | π ∈ Π},
implying that αx,αy ∈ F (T ). Then, by (E) and (BWARP1), {αx,αy} =
F (S). By (SI), F (comp {x, y}) = {x, y}. This shows that (1.3) holds.
Next, consider

Q
i∈N xi >

Q
i∈N yi ≥ 0. Then, by choosing an appropriate

ε ∈ Rn
+ with ² > 0, we can have

Q
i∈N xi =

Q
i∈N zi for z ≡ y + ε. From

(1.3), F (comp {x, z}) = {x, z}. Noting that z > y and by (BWARP2),
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y /∈ F (comp{x, y}). Thus, by (E), F (comp {x, y}) = {x}. This proves that
(1.4) holds.

Now, take any A ∈ Σ and x ∈ F (A). Suppose x /∈ FN (A). Then,
there exists y ∈ FN (A) such that

Q
i∈N yi >

Q
i∈N xi ≥ 0. By (1.4),

F (comp {x, y}) = {y}. Noting that y ∈ A, by (BWARP2), x /∈ F (A),
which is a contradiction.

The above establishes that (1.1) implies (1.2).

To see that (1.2) implies (1.1), we first note that any selection from FN

satisfies (E). Therefore, we need only to show that, if F selects from FN ,

and coincides with FN on simple problems, then F satisfies (BWARP1) and

(BWARP2).

Let F select from FN , and coincides with FN on simple problems.

F satisfies (BWARP1): Let x, y, z ∈ Rn
+ with y > z, and {x, y} =

F (comp {x, y}). Since F coincides with FN on simple problems, we have

{x, y} = F (comp {x, y}) = FN(comp {x, y})

Then,
Q
i∈N xi =

Q
i∈N yi >

Q
i∈N zi. Consider any A ∈ Σ with x, z ∈ A.

Then, z 6∈ FN(A). Note that F selects from FN . We then have z 6∈ F (A).
F satisfies (BWARP2): Let x, z ∈ Rn

+ and {x} = F (comp {x, z}). Since
F coincides with FN on simple problems, we then have

Q
i∈N xi >

Q
i∈N zi.

Consider any A ∈ Σ with x, z ∈ A. Then z 6∈ FN(A). Then, z 6∈ F (A) since
F selects from FN .

Therefore, we have shown that (1.2) implies (1.1). ¦

Our Proposition 1 can be regarded as a partial characterization of the

Nash solution to nonconvex bargaining problems. It also shows that if we

are interested in recommending an efficient and ‘equitable’ solution having

some (weak) property of rational choice, we must choose from the set of

options contained in the Nash solution.

4 Proposing a refinement of the Nash solu-
tion

Given Proposition 1 in the last section, if we are interested in solutions

having certain properties like (E), (A), (SI), (BWARP1) and (BWARP2),

then we are confined to considering alternatives recommended by the Nash
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solution. Given the multi-valuedness of the Nash solution, the Nash solu-

tion is not necessarily attractive as it typically contains many undesirable

outcomes in terms of fairness. Consider the following bargaining problem

with A = comp{(3, 12), (6, 6), (9, 4)}. It can be easily checked that FN(A) =
{(3, 12), (6, 6), (9, 4)}. Note that, for both players, the outcome (6, 6) lies
‘in-between’ (3, 12) and (9, 4) since for player 1, we have 3 < 6 < 9 and
for player 2, we have 4 < 6 < 12. In a sense, the outcome (6, 6) is ‘more
equitable’ than the two ‘extreme’ outcomes (3, 12) and (9, 4). Based on this
intuition, we shall introduce a refinement of the Nash solution to nonconvex

problems. Our refinement of the Nash solution selects, for each bargaining

problem A, all the points in FN(A) that also lie on the highest indifference
surface given by min(a1/m1(A), · · · , an/mn(A)) attainable in A.

2 Formally,

we have:

Definition 2: A bargaining solution over Σ is the equitable Nash solu-

tion, to be denoted by FEN , if for all A ∈ Σ, FEN(A) = {a ∈ FN(A) |
mini∈N

n
ai

mi(A)

o
≥ mini∈N

n
xi

mi(A)

o
for all x ∈ FN(A)}.

Therefore, for any given problem A, to obtain FEN(A), we first find out the
Nash solution, FN(A), to the bargaining problemA, and then, from the Nash
solution set FN(A), we select all the points lying on the highest indifference
surface given by min(a1/m1(A), · · · , an/mn(A)).
To see that FEN is a (proper) refinement of the Nash solution, we consider

our earlier bargaining problem A = comp{(3, 12), (6, 6), (9, 4)}. It may be
checked that FN(A) = {(3, 12), (6, 6), (9, 4)}, whereas FEN(A) = {(6, 6)}.
Note that, for convex bargaining problems, FEN coincides with the Nash

solution FN . Therefore, FEN is an extension of the standard Nash solution

defined for convex problems.

It is worth mentioning that FEN violates a continuity property defined

below:

2The KS solution can be defined as usual: for all A ∈ Σ, FKS(A) = {x ∈ A |
x1/m1(A) = · · · = xn/mn(A), and there exists no y ∈ A such that y À x}. It may
be noted that the solution given by F (A) = {a ∈ A | min(a1/m1(A), · · · , an/mn(A)) ≥
min(x1/m1(A), · · · , xn/mn(A)),∀x ∈ A} for all A ∈ Σ is a natural extension of the KS
solution to nonconvex problems, as proposed by Nagahisa and Tanaka (2002). The rea-

son that we use this variant of the KS solution (instead of the KS solution itself) is that

FN (A) ∩ FKS(A) = ∅ for some A ∈ Σ.
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Continuity (CON): For any sequence
©
Ak
ª ⊆ Σ which converges to A0

in the sense of the Hausdorf metric, and for any sequence
©
xk
ª
such that

xk ∈ F ¡Ak¢ for each k and xk → x0, x0 ∈ F (A0) holds.

To see that FEN violates (CON),3 consider again our earlier bargaining

problem A = comp{(3, 12), (6, 6), (9, 4)}. Note that FEN = {(6, 6)}. Let
² > 0 and define

A(²) = comp{(3, 12), (6− ², 6− ²), (9, 4)}

Then, FEN(A(²)) = FN(A(²)) = {(3, 12), (9, 4)}, which does not converge to
{(6, 6)}.
Note that there exists no single-valued solution to nonconvex problems

which satisfies (CON) and refines the Nash solution at the same time, as was

shown by Peters and Vermeulen (2012) and Xu and Yoshihara (2013). Thus,

every single-valued refinement of (asymmetric) Nash solution proposed by

Peters and Vermeulen (2012) violates (CON) and (AN), whereas any other

proposals of extensions of the Nash solution of convex problems to nonconvex

problems such as Zhou (1997) and Conley and Wilkie (1998) violate either

(AN) or (E) although their proposals are single-valued and satisfy (CON).

5 Characterization of FEN

In this section, we study the behavior of the solution FEN . We begin by

introducing a notation. For all x ∈ Rn
+, let x̄ = max{xi ∈ R+ | i = 1, · · · , n}

and x = min{xi ∈ R+ | i = 1, · · · , n}. Next, we note that FEN satisfies the
following two axioms.

Equity Principle (EP): For all A ∈ Σ such that A is not a simple problem,
is symmetric, and for all x ∈ A, if there exists y ∈ A such that {x, y} =
F (comp{x, y}) and (x, · · · , x) < y < (x̄, · · · , x̄), then x /∈ F (A).

Weak Contraction Independence (WCI): For any A,B ∈ Σ, if m(A) =
m(B), A ⊆ B and A ∩ F (B) 6= ∅, then F (A) = F (B) ∩A.

3We are grateful to an Associate Editor for pointing this out and for suggesting the

example below.
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(EP) reflects an equity concern in making a solution recommendation for

bargaining problems. It says that, for any symmetric problem A and for any

two points, x and y, in A, if, in the simple bargaining problem formed by the

comprehensive hull of x and y, they both are chosen as the solution to the

problem comp{x, y}, but the maximum (resp. minimum) utility specified in

x is greater (resp. less) than the maximum (resp. minimum) utility speci-

fied in y (so that the utility distribution under y is more evenly distributed

than under x), then x should not be chosen from A. It may be noted that

this equity idea is originated from the Hammond equity (Hammond (1976))

which is embedded in the requirements that (x, · · · , x) < y < (x̄, · · · , x̄) and
that A is a symmetric problem. Note that a typical underlying environment

from which a symmetric problem arises is that every player has the same

preference relation over social alternatives and they have the same physical

option set. In such a case, an idea of inequality aversion in outcomes such as

the Hammond equity seems reasonable from a viewpoint of equal treatment

of equals. Moreover, (EP) also incorporates our intuition that a procedure

of sequential binary choices is not sufficient to make an equitable recommen-

dation, in that it is typical that a solution keeps silent for comparing x and

y in the simple problem comp{x, y}. In such a case, the solution should refer
to a global information of the problem A to apply an equity consideration.

(WCI) is a familiar one used for characterizing the Kalai-Smordinsky (KS)

solution for nonconvex bargaining problems (see, for example, Xu and Yoshi-

hara (2006)). As argued in Xu and Yoshihara (2008), the axiom (WCI) can be

interpreted as reflecting an idea of solidarity in making solution recommen-

dations. Indeed, the solidarity idea embedded in (WCI) is that, whenever a

problem B shrinks to another problem A while the ideal positions for players

are unchanged, the change in each player’s compromising from her ideal po-

sition should be adjusted to the same direction as any other player’s. Hence,

as long as a subset of F (B) is still available in A, this subset F (B)∩A should
continue to be the solution to A due to the spirit of solidarity. This require-

ment is particularly relevant when a solution is efficient, since any movement

with the same direction away from any alternative in F (B) ∩ A will make
every player worse off.

With the help of axioms (EP) and (WCI), we obtain the following result,

which is a characterization of FEN .

Theorem 1. A solution F satisfies (E), (A), (SI), (BWARP1), (BWARP2),
(WCI), and (EP) if and only if F = FEN .

11



Proof. It can be checked that FEN satisfies (E), (A), (SI), (BWARP1),

(BWARP2), (WCI), and (EP). We now show that a solution F satisfying

(E), (A), (SI), (BWARP1), (BWARP2), (WCI), and (EP) must be FEN .

Let F satisfy (E), (A), (SI), (BWARP1), (BWARP2), (WCI), and (EP).

Take any A ∈ Σ and x∗ ∈ FEN(A). By Proposition 1, F (A) ⊆ FN(A).
Take any y ∈ FN(A)\FEN(A), and suppose y ∈ F (A). Consider α ∈
Rn
++ such that mi(A

0) = mj(A
0) for any i, j ∈ N , where A0 ≡ αA. Let

x∗0 ≡ αx∗. Then, by (SI), y0 ∈ F (A0), where y0 ≡ αy. Consider S ≡
comp {x∗0, y0, (m1 (A

0) ,0−1) , . . . , (mn (A
0) ,0−n)} ⊆ A0. Then, by (WCI),

y0 ∈ F (S). Also consider S0 ≡ comp {x∗0, y0}. Then, by Proposition 1.,
{x∗0, y0} = F (S0). Next, consider T ≡ ∪π∈Ππ (S). By (A), (WCI), and
(E), {π (y0)}π∈Π ⊆ F (T ), where Π is the set of all permutations of N .

Note that S0 ∪ T = T is symmetric and {x∗0, y0} = F (comp{x∗0, y0}). Let
ȳ0 ≡ (y0, · · · , y0) and y0 ≡ (y0, · · · , y0). Then, since x∗0 ∈ FEN(A0) and
y0 ∈ FN(A0)\FEN(A0), we have ȳ0 > x∗0 > y0. Thus, by (EP) and (A),
{π (y0)}π∈Π cannot be a subset of F (T ), which is a contradiction. Thus, for
any y ∈ FN(A)\FEN(A), y /∈ F (A). Combining with Proposition 2, we con-
clude that F (A) ⊆ FEN(A). Finally, we can see that F (A) = FEN(A) by
(SI) and (A). ¦

From Theorem 1, it may be noted that many axioms used for characteriz-

ing FEN are also satisfied by the KS solution to nonconvex problems. It can

be checked that the KS solution to nonconvex problems can be characterized

by the properties of weak efficiency and single-valuedness together with (A),
(SI), and (WCI) (see, for example, Xu and Yoshihara (2006) and Lombardi

and Yoshihara (2010)). Moreover, the KS solution satisfies (CON) and (EP).

Note that the KS solution violates (E), (BWARP1) and (BWARP2), since

the KS solution is not rationalizable by any acyclic binary relation. In con-

trast, though FEN is rationalizable by an acyclic binary relation, it is not

single-valued. These observations suggest that, in the presence of the prop-

erties like (E), (A), (SI), (BWARP1) and (BWARP2), rationalization of a

solution by an acyclic relation and the single-valuedness of a solution are not

compatible for nonconvex bargaining problems.

To conclude this section, we discuss the independence of the axioms

figured in Theorem 1 by focusing on (BWARP1), (BWARP2), (EP) and

(WCI). Note that the following solution F pN : for all A ∈ Σ, F pN(A) =

{a ∈ FN(A) | mini∈N
n

ai
mi(compFN (A))

o
≥ mini∈N

n
xi

mi(compFN (A))

o
for all x ∈

12



FN(A)} satisfies (E), (A), (SI), (BWARP1), (BWARP2) and (EP), but vio-
lates (WCI). Note that FN satisfies (E), (A), (SI), (BWARP1), (BWARP2)

and (WCI), but violates (EP). Finally, consider the following solution FP :

for all A ∈ Σ, let P (A) be the Pareto set of A, and let FP (A) = {a ∈ P (A) |
mini∈N

n
ai

mi(A)

o
≥ mini∈N

n
xi

mi(A)

o
for all x ∈ P (A)}. It can be checked that

FP satisfies (E), (A), (SI), (EP) and (WCI) but violates (BWARP1) and

(BWARP2).

6 Conclusion

In this paper, we have introduced a new solution as an equitable refinement

of the Nash solution to nonconvex bargaining problems and studied it ax-

iomatically. The following table summarizes the properties of the Nash, KS,

FEN solutions discussed in the paper where ◦ indicates the specified solution
satisfies the corresponding axiom while × indicates otherwise:

N KS FEN

(E) ◦ × ◦
(A) ◦ ◦ ◦
(SI) ◦ ◦ ◦

(BWARP1) ◦ × ◦
(BWARP2) ◦ × ◦

(EP ) × ◦ ◦
(WCI) ◦ ◦ ◦

Note that the equitable Nash solution proposed in this paper can be

implemented by the two-stage bargaining procedure: to arrive at the fi-

nal recommendation for nonconvex bargaining problems, it first employs the

Nash solution concept and –among the options recommended by the Nash

solution– then it adopts a procedure based on the idea of the KS solution

with reference to an ideal point. Such a two-stage procedure resembles the

idea of sequential rationalizability discussed in the context of abstract choice

problems by Manzini and Mariotti (2006, 2007) and by Tadenuma (2002).

However, there is a significant difference between the two-stage procedure

of the equitable Nash solution and the notion of sequential rationalizability.

The difference is that FEN (to abuse the notion, we interpret FEN as a choice

13



function here) cannot be a sequentially rationalizable choice function. To see

this, for a given binary relation R ⊆ Rn
+×Rn

+ with P (R) as its correspond-
ing strict part, let max (A;R) ≡ {x ∈ A | ∀y ∈ A : (y, x) /∈ P (R)}. Then, a
choice function C is sequentially rationalizable if there exist two binary rela-

tionsR1, R2 overR
n
+ such that, for anyA ∈ Σ, C(A) = max(max(A;R1);R2).

Now, let RN ⊆ Rn
+ ×Rn

+ be a binary relation such that for any x, y ∈ Rn
+,

(x, y) ∈ RN if and only if
Q
i∈N xi ≥

Q
i∈N yi. If F

EN is a sequentially

rationalizable choice function, then there must be another binary relation

RE ⊆ Rn
+×Rn

+ such that for anyA ∈ Σ, FEN(A) = max
¡
max

¡
A;RN

¢
;RE

¢
.

Note, however, FEN(A) = max
¡
max

¡
A;RN

¢
;REA

¢
for any A ∈ Σ, where

REA ⊆ Rn
+ × Rn

+ is such that for any x, y ∈ Rn
+, (x, y) ∈ REA if and only if

mini∈N
n

xi
mi(A)

o
≥ mini∈N

n
yi

mi(A)

o
. This suggests that REA may vary accord-

ing to the feasible set A, which implies that FEN may not be sequentially

rationalizable.

On the other hand, the endogenous nature of the underlying second crite-

rion REA is perhaps a desired feature of F
EN . This is because REA represents

an ethical principle in terms of procedural fairness stipulating what social

outcomes should be selected from which feasible option set. In FEN , the

necessary information about feasible option sets for identifying the ranking

REA is of m(A).
We offer a final remark to conclude the paper. It may be of interest to

note that our framework can be readily adapted to studying collective choice

problems where each bargaining problem can be interpreted as a feasible set

available to a fixed number of individuals in the society and a solution can

be interpreted as a collective choice function. With this reinterpretation,

the axioms employed in the paper can be reformulated and re-interpreted ac-

cordingly. This seems to open a new possibility of investigating and studying

collective choice problems. It would be interesting to explore this possibility

in various contexts.
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