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Abstract 

Saijo, Okano, and Yamakawa (2015) showed that the mate choice mechanism for a symmetric 

prisoner’s dilemma (PD) game implements cooperation in backward elimination of weakly 

dominated strategies (BEWDS), and it attained almost full cooperation in their experiment. 

This study theoretically shows, first, that this mechanism works well in the class of 

quasi-dilemma (QD) games, such as asymmetric PD games and coordination games. Second, 

the class of BEWDS-implementable games is exactly the same as the class of QD games. Third, 

the mechanism cannot implement cooperation in a subgame perfect equilibrium. Finally, we 

confirm that the mate choice mechanism works well experimentally for an asymmetric PD 

game.  
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1. Introduction 

Over the past six decades, the prisoner’s dilemma (PD) game has been extensively 

discussed in both the public and academic press (see Poundstone (2011) for a historical 

perspective). The PD game presents a scenario in which the outcome of one person’s decision 

is determined by the simultaneous decisions of the other participants, resulting in a bad 

outcome for all of them (a Pareto-inefficient Nash equilibrium) if all act in their own 

self-interest. The key characteristic of this game is that while there are substantial gains that 

could be attained through cooperation, non-cooperation is dominant for each player (see Kuhn 

(2014) for an overview of PD literature).  

Since participants in laboratory experiments consider non-monetary factors such as 

social norms and anonymity as well as monetary stakes, the cooperation rates, that is, the ratio 

of participants who chose cooperation, in PD game experiments are well above zero (see 

Chaudhuri (2011) for a survey), but not close to one. In order to increase the cooperation rates 

in PD games, researchers, such as Yamagishi (1986), Banks, Plott, and Porter (1988), Varian 

(1994), Fehr and Gächter (1999), Andreoni and Varian (1999), and Charness, Fréchette, and Qin 

(2007), started adding a stage before or after the PD games.1 Adding a stage after the PD game 

allows participants to punish non-cooperation. Although participants in such games do not 

have a monetary incentive to punish other players, cooperation rates in experiments with 

punishment increase, but still do not become close to one (see Yamagichi (1986) and Fehr and 

Gächter (1999)). Varian (1994) introduced a compensation mechanism before the dilemma game. 

Under this mechanism each player is asked in the first stage to choose how much to pay his or 

her counterpart for cooperating. After learning the payments offered in the first stage, the 

players then play a normal PD game. Andreoni and Varian (1999) conducted experiments with 

the compensation mechanism and observed that cooperation rates increased from 25.8% when 

transfer payments were not feasible to 50.5% when transfer payments were permitted, and the 

cooperation rate was around 20% in the first two rounds. Charness, Fréchette, and Qin (2007) 

conducted experiments and observed that cooperation rates increased from 11–18% when 

transfer payments were not feasible to 43–68% when transfer payments were permitted. 

Our aim in this study is to find one of the simplest possible mechanisms to solve social 

dilemmas, including the prisoner’s dilemma, both experimentally and theoretically. 

Experimentally, we focus on designing a mechanism that can attain a Pareto efficient outcome 

                                                   
1 The choice of a participant in the first stage is scrutinized by the other participant before deciding the choice 

in the second stage. As Levitt and List (2007) suggested, this might increase cooperation. 
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in a few rounds,2 because we cannot repeat the same mechanism many times in real-life 

settings. Theoretically, we do not stick to Nash or Nash-type equilibrium concepts, but search 

for a behavioral principle among subjects in experiments that implements cooperation. In 

addition, we do not use punishment or reward to balance the budget, that is, there is no 

monetary inflow or outflow in the mechanism design.3 

The study by Saijo, Okano, and Yamakawa (2015) is one of the first attempts to design 

such a mechanism for the PD.4 They proposed the mate choice (MC) mechanism, which occurs 

after a symmetric PD game. After observing the choice of cooperation (C) or defection (D) in the 

PD game, each player is asked to approve or disapprove of the other’s choice. If both approve 

it, the outcome is what they chose in the PD game; if at least one player disapproves of the 

other’s choice, the outcome is the same as when both defect in the PD game.5 Experimentally, 

Saijo et al. (2015) observed that the cooperation rate with the mechanism was 95.0% in round 1 

and 96.9% over 19 rounds, when each subject was never matched with the same subject again 

in all rounds.6 The (C, C) share, that is, the ratio of pairs in which both chose cooperation, was 

90.0% in round 1 and 94.0% over 19 rounds. They also found that subjects’ behavior was 

consistent with backward elimination of weakly dominated strategies (BEWDS) rather than 

Nash equilibrium (NE) or subgame perfect equilibrium (SPE) behavior. BEWDS is a procedure 

that eliminates weakly dominated strategies in each subgame, backwardly. The strategies that 

survive through the procedure are called BEWDS strategies. Theoretically, Saijo et al. (2015) 

proved that the MC mechanism implements cooperation in BEWDS for symmetric PD games.7 

In two related studies, Masuda, Okano, and Saijo (2014) constructed a minimum 

approval mechanism, which is a version of the MC mechanism, in a public good economy 

when the number of players is two and their preferences are linear. They showed 

                                                   
2 Chen (2005), for example, found that the stability property of mechanisms depends on their supermodularity. 
Supermodular mechanisms may require many periods to converge to a desired outcome. The goal of the 
endeavor is not to find such mechanisms but to find mechanisms that can attain a desired outcome in a few 
periods. 
3 According to Guala (2013), strong reciprocity, in which a player punishes other players using the player’s own 

resources, is rare in human history. 
4 Saijo, Masuda, Okano and Yamakawa (2017) is a simplified version of Saijo et al. (2015). 
5 Because the MC mechanism does not have devices such as punishment or reward, it is budget balanced. 
6 This is called complete stranger matching, and only a few experiments employ this matching. Saijo et al. 
(2015) chose this matching since it is the least favorable design for cooperation with respect to matching. 
7 The MC mechanism uses unanimity. Banks, Plott, and Porter (1988) introduced a voting stage after a public 

good provision stage and observed that unanimity reduced efficiency. Researchers stopped pursuing this 

avenue after Banks et al. (1988) presented their findings. Furthermore, Masuda, Okano, and Saijo (2014) found 

that the MC mechanism cannot implement a Pareto-efficient allocation in BEWDS for an economy with a 

public good.  
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experimentally that the mean contributions ranged from 76.9% to almost 100.0%, with an 

average of 94.9%. Huang, Masuda, and Saijo (2014) constructed a simplified approval 

mechanism, which is also based on the MC mechanism, for a symmetric PD game in which the 

number of players was expanded from two to three. They observed experimentally that the 

mean cooperation rate increased from 44.4% in round 1 to above 90.0% in round 5 and 

maintained that level in the remaining 10 rounds. 

From the above-mentioned studies, it seems that the MC mechanism performs very 

well in stimulating the players to cooperate in a symmetric environment. Consequently, the 

question of whether the MC mechanism is also effective in an asymmetric environment is 

natural. As Andreoni and Varian (1999) found, a participant with a relatively low payoff tends 

not to cooperate and this might influence the cooperation rate. Hence, in this paper we expand 

the domain of this mechanism from symmetric PD games to asymmetric games that are not 

necessarily PD games. We find theoretically that the MC mechanism implements cooperation 

in BEWDS for the class of quasi-dilemma (QD) games, which contains coordination games, 

including the stag hunt game and PD games. Furthermore, under several mild conditions, we 

show that the class of games implementing cooperation in BEWDS is exactly the same as the 

class of QD games, and that the MC mechanism cannot implement cooperation in SPE.  

In order to test the performance of the MC mechanism experimentally in an 

asymmetric environment, we choose an asymmetric parameterization of the PD game (“Game 

3” in Charness et al. (2007)) because the cooperation rate of this parameterization (42.9%) was 

worse than those for the other two asymmetric parameterizations (53.9% in “Game 1” and 

68.1% in “Game 2”). This fact also motivates us to investigate whether the MC mechanism 

performs better than the compensation mechanism does. It should be noted that the 

compensation mechanism does not cover all PD games; in contrast, the MC mechanism covers 

all PD games and non-PD games. That is, there is a class of PD games in which the 

compensation mechanism cannot implement cooperation in SPE. Game 3 belongs to this class. 

Experimentally, we observed that the cooperation rate with the MC mechanism in an 

asymmetric environment started at about 76.7% in round 1, rose to 86.7% in round 2, 93.3% in 

rounds 3 and 4, 96.7% in round 5, and then stayed above 98.0% in the remaining 14 rounds. 

The overall average cooperation rate over 19 rounds was 96.7%. The (C,C) share started at 

56.7% in round 1, rose to 73.3% in round 2, to 86.7% in rounds 3 and 4, to 93.3% in round 5, and 

then stayed above 96.0% in the remaining 14 rounds. The overall average (C,C) share over 19 

rounds was 93.5%. That is, the MC mechanism works reasonably well, although it took a few 
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rounds to achieve high (C,C) share in an asymmetric PD game. 

A good example of the mate choice mechanism in an asymmetric environment is 

so-called MAD (Mutually Assured Destruction) that led the earth to the avoidance of nuclear 

disaster around the last half of the twentieth century. Even though superpower A attacks the 

other superpower S using nuclear weapons, superpower S can monitor the attack and then has 

enough time to mount the counterattack. In other words, this is a two-stage game where the 

first stage is a PD game, and the second stage is a special case of the approval stage. The 

approval in the second stage is “No (Further) Attack” and the non-approval is “(Counter) 

Attack.” If a superpower decides to choose “Attack” in the PD game, she must choose “No 

(Further) Attack” automatically in the second stage since she has already chosen “Attack” in 

the first stage. Then each chooses “No Attack” or “No Action” in the first stage, and then 

chooses “No (Further) Attack” in the second stage is the unique BEWDS path.8 Notice that the 

second stage mechanism is not by man made one such as convention, but by an evolving 

mechanism due to technological constraints including the monitoring accuracy and the time 

lag between the discharge and explosion that are called second-strike capability by Russett, 

Starr and Kinsella (page 237, 2009). The technological progresses were due to the battle of 

holding hegemony over the other superpower. 

There are many other examples of the mate choice mechanism. Consider a merger or 

a joint project of two companies. They must propose plans (the contents of cooperation) in the 

first stage, and then each faces the approval decision in the second stage. In order to resolve 

the conflicts such as prisoner's dilemma, interested parties usually form a committee consisting 

of representatives of the parties. Consider two companies facing confrontation on the 

standardizations of some product. Each company chooses cooperation (or compromise) or 

defection (or advocating of the own standard), and then the committee consisting of two 

company members and/or bureaucrats gives the approval. Another example is the two party 

system. Each party chooses either cooperation (or compromise) or defection (or insistence of 

policy for the own party), and then diet (or national assembly) plays a role of approval. The 

bicameral system also has two stages. One chamber decides a policy (or compromise) and the 

other chamber plays a role of approval. The negotiation process at United Nations also has this 

structure. Negotiators among relevant countries get together to find compromise, i.e., the 

                                                   
8 Robert J. Aumann (2006) in his Nobel Lecture described MAD as an outcome of infinitely repeated games in 

order to maintain cooperation. The idea of approval mechanism is not to use infinite periods but to consider 

the game in two stages. Notice also that (Attack, Attack) is a part of SPE, but not a part of the BEWDS path. That 

is, it was fortunate that the decision makers of the superpowers did not follow this path.  
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content of cooperation in the first week and then high ranked officials such as presidents and 

prime ministers get together to approve or disapprove it in the second week. Adding the 

second stage in resolving conflicts has been used widely in our societies. 

The paper is organized as follows. Section 2 describes the MC mechanism applied to 

QD games. Section 3 proves that BEWDS implementable games are QD games and shows that 

the MC mechanism cannot implement cooperation in SPE. Section 4 presents the experimental 

design, and Section 5 presents the results. Section 6 provides suggestions for further research. 

 

2. The mate choice mechanism and quasi-dilemma games 

Consider a 2 × 2 game that has two strategies: cooperation (C) and defection (D). 

 

  Player 2 

  C D 

Player 1 
C (a,v)=V (b,w)=W 

D (c,x)=X (d,z)=Z 

 

Figure 1. A QD game. 

 

Define a payoff function p for the game as follows: p(C,C) = (a,v) = V, p(D,C) = (c,x) = X, p(C,D) 

= (b,w) = W, and p(D,D) = (d,z) = Z. If p satisfies V > Z (a > d and v > z), X Z (d > c or z > x), 

and W  Z (d > b or z > w), then p is a QD game; if p satisfies V > Z, ( , ) ( , )c d a b  and 

( , ) ( , )w z v x , then p is a PD game.9 Coordination games, including the stag hunt game, are QD 

games. 

 

Property 1. A prisoner’s dilemma game is a quasi-dilemma game. 

 

Proof. Let p be the payoff function of a PD game. Then (a,v) > (d,z), ( , ) ( , )c d a b , and 

( , ) ( , )w z v x . Given V = (a,v) and Z = (d,z), let X = (c,x) and W = (b,w) satisfy the conditions. 

Thus, c > a, z > x, d > b, and w > v. Since z > x and d > b, it follows that (d > c or z > x) and (d > b 

or z > w). That is, X Z and W  Z. █  

 

 

                                                   
9 “>” indicates that each element of the left-hand-side vector is “strictly greater than” each element of the 

right-hand-side vector, and “≥” indicates that each element of the left-hand-side vector is “greater than or 
equal to” each element of the right-hand-side vector. 
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Figure 2. Possible locations of X and W in QD and PD games. 

 

Figure 2 shows the possible locations of X and W in QD and PD games. The region for 

QD games is the dark L-shaped area (i.e., R1, R2, R3, R4, and R5), and the regions for PD 

games are R1 for W and R5 for X. The line '  shows points where the sum of benefits to 

both players is equal to a + v. If V must be Pareto efficient, then X and W must lie under ' . 

We do not impose this condition hereafter.  

Let us define the MC mechanism. Players first choose either C or D in Figure 1. After 

this stage, each subject can approve (y) or disapprove (n) of the other player’s choice in the 

second stage. If both approve the other player’s choice, the outcome is what they chose; if 

either one disapproves of the other player’s choice, the outcome is that both defect. Let ,i iM m , 

and iu be player i’s choice between C and D, i’s choice between y and n, and i’s payoff, 

respectively. Then, the MC mechanism is defined by the following rule: if 

1 2 ,m m y  then 1 2( , )u u 1 2( , )p M M ; otherwise, 1 2( , ) ( , ).u u p D D  In general, the two-stage 

game without any rule specification is called an approval mechanism. 

Saijo et al. (2015) considered five possible behavioral principles for the MC 

mechanism in their experiments: the NE, the SPE, evolutionarily stable strategies (ESS), 

neutrally stable strategies (NSS), and BEWDS. Of the five behavioral principles, the data from 

their experiments are most compatible with BEWDS.  

Since we focus upon SPE and BEWDS, let us define them. As we show later, since 

there is no need to consider mixed strategies in our framework, a profile of strategies indicates 
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an assignment of a pure strategy for each information set. A profile of strategies is an SPE if the 

restriction of the profile at each subgame is a Nash equilibrium. Let us fix a subgame, and we 

say that a strategy at an information set in the game survives the elimination of weakly dominated 

strategies if the strategy is not weakly dominated by any other strategies available at that 

information set.10 A profile of strategies is a BEWDS if the restriction of the profile at each 

subgame survives the elimination of weakly dominated strategies. A mechanism implements 

cooperation in SPE (or BEWDS) if all players choose cooperation in the first stage under SPE 

(or BEWDS). Next, we show that the MC mechanism with a QD game implements cooperation 

under BEWDS. 

 

Property 2. The mate choice mechanism with a QD game implements the cooperative outcome under 

BEWDS. 

 

Proof and Interpretation. The MC mechanism with a QD game has the four subgames shown in 

Figure 3. Because of the definition of the MC mechanism, we have 1 2( , ) ( , )u u d z  for (y,n), 

(n,y), and (n,n) in each subgame. This was termed the MC flat by Saijo et al. (2015), because the 

three cells other than (y,y) have the same payoff vector. 

Consider subgame CC, where both players have chosen C. Player 1 must compare 

(a,d) and (d,d). Because a > d, player 1 chooses y because of the elimination of weakly 

dominated strategies. However, player 1 does not necessarily compare two vectors because of 

the MC flat. Player 1 should compare a and d to understand this domination.  

Although player 1 can choose either y or n, basing this on the elimination of weakly 

dominated strategies alone, player 1 must additionally consider player 2’s choice. Player 1 

compares v and z, and hence, player 1 understands that player 2 chooses y. Thus, player 1 

understands that the choice at (C,C) is (y,y), which is shown by the bold square in Figure 3 for 

subgame CC. Therefore, player 1 can fill the (C,C) part of the reduced normal form game with 

(a,v), which is located above the four subgames in Figure 3. 

Consider subgame DC. Because X Z, it must be that d > c or z > x. Suppose that z > x. 

Then, player 2 chooses n and understands that the outcome is (d,z) regardless of the choice of 

player 1 in this subgame. However, as a thought experiment, player 1 must consider player 2’s 

choice if it were the case that c > d. That is, although player 1 would choose y, player 1 could 

                                                   
10 For the game shown in Figure 1, C weakly dominates D for player 1 if and only if ,  a c b d  , and there is at 

least one strict inequality. Notice that no strategies could survive if we use strong domination with strict 
inequality of each element. 
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not identify which of (c,x) and (d,z) would be realized without knowing player 2’s choice. 

Suppose d > c. Player 1 chooses n and understands that the outcome is (d,z) without 

considering player 2’s choice. 

Repeating the same procedure at each of the subgames CD and DD, player 1 can 

construct the reduced normal form game above the four subgames in Figure 3. Because the 

game also has the MC flat and a > d, player 1 chooses C. 

If player 1 understands that player 2’s position is the same as that of player 1 using 

the same procedure, player 1 is convinced that player 2 also chooses (C,y). If so, the 

equilibrium path under BEWDS is ((C,C),(y,y)). Thus, we simply write (C,C,y,y) hereafter. █  
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Figure 3. Construction of the reduced normal form game. 

 

Although this proof is mathematically almost the same as that of Saijo et al. (2015), 

there are several differences between the two because of possible asymmetry. First, because 

they used the symmetric payoff table, d = z, all components of the three cells have the same 

number. In this sense, these three cells have the completely flat property. Therefore, the change 

from d = z to d z might increase the player’s burden to understand the game. Second, (a,d) is 

different from (v,z), whereas (a,d) = (v,z) in Saijo et al. (2015). This change also increases the 

players’ burden. The same argument can be applied to all subgames. Third, players who 

understand the strategic implications of vectors V, W, X, and Z in the symmetric case might 

not be able to understand them in the asymmetric case under BEWDS. Finally, even though 

players may understand these points, the difference between a and v may evoke an “equity” 

module in their brains, which could trigger “non-rational” motivation. 

An important property of the MC mechanism is that it is onto: the set of possible 
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payoffs of a QD game is equal to the set of those of the MC mechanism. The former is 

{V,W,X,Z}, and the latter must be the same. For example, although player 1 does not want to 

choose y at (C,D), W is the payoff pair if both choose y. This condition excludes any payoff flow 

from or to the game. In other words, no outside penalty or reward is given in order to maintain 

a balanced budget.11 

 

3. Games that are implementable by BEWDS are quasi-dilemma games 

We consider the tightness of the parameter space of QD games and the implementable 

parameter space of BEWDS. If the latter is larger, the idea of BEWDS implementation can be 

applied to many other 2 × 2 games. However, we show that these two spaces are identical 

under several assumptions.12 

First, the approval mechanism satisfies forthrightness: if both choose y in the second 

stage after the choice of a strategy pair in the first stage, the outcome must be that strategy 

pair.13 That is, the outcome must be what they choose whenever both choose y. Second, the 

approval mechanism has a flat: the outcome of the second stage, except for (y,y), and that of the 

reduced game, except for (C,C), are the same. Thus, we have the following property. 

 

Property 3. Suppose that V > Z and that an approval mechanism satisfies forthrightness with the flat, 

Z. Then, the class of games implementing cooperation in BEWDS is exactly the same as that of QD 

games. 

 

Proof. Consider any approval mechanism implementing outcome V in BEWDS. Because 

forthrightness is satisfied, if both choose y, the payoffs of subgames CC, CD, DC, and DD must 

be V, W, X, and Z, respectively. Because Z is the flat and the mechanism implements 

cooperation, the payoff should be Z in subgames CD and DC. That is, (d > b or z > w) and (d > c 

or z > x) for subgames CD and DC, respectively. Because (  or )d b z w    

(  and )d b z w   ( ),W Z  (d > b or z > w) is equivalent to W Z. Similarly, we obtain X Z. 

That is, the class of games implementing cooperation in BEWDS is exactly the same as the class 

                                                   
11 The money-back-guarantee mechanism introduced by Dawes, Orbell, Simmons, and van de Kragt (1986) 
and Isaac, Schmidtz, and Walker (1989) is not onto. Let C be a fixed amount of contribution for public good 
provision, and let D be no contribution. The money-back-guarantee mechanism returns the contribution to a 
player if both do not contribute, and hence, X and W cannot be payoffs produced by the mechanism. If player 
1 is a utilitarian, and hence prefers X to Z, the MC mechanism can lead to X unlike the money-back-guarantee 
mechanism. 
12 These assumptions are essentially the same as those introduced by Saijo et al. (2015). 
13 Saijo, Tatamitani, and Yamato (1996) introduced forthrightness in natural mechanism design. 
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of QD games. █   

 

Let us now consider the SPEs of QD games. Since the Nash equilibrium payoffs are 

(a,v) and (d,z) at subgame CC and (d,z) at subgames DC, CD, and DD, two cases exist in the 

reduced normal form games shown in Figure 4. Because all combinations, (C,C), (D,C), (C,D), 

and (D,D), are Nash equilibria of the games, they are also the outcomes of SPEs. Therefore, the 

MC mechanism cannot implement cooperation in SPE. That is, multiple Nash equilibria in a 

subgame generate multiple SPEs due to the MC flat. Furthermore, players in an SPE must 

consider how the other player behaves in each subgame. 

  

                          

Player 2                               Player 2   

   C D   C D    

 
Player 1 

C a,v d,z 
Player 1 

C d,z d,z    

 D d,z d,z D d,z d,z    

              (i) (y,y) in subgame CC             (ii) (n,n) in subgame CC 

Bold italic cells indicate Nash Equilibria in the reduced normal form games.      

Figure 4. Two reduced normal form games. 

 

 Consider now informational burden to a player using BEWDS. Since subjects can 

instantaneously understand that each subgame in the second stage has the MC flat, and can 

identify (d,z) as the outcome of subgame DD in Figure 3, the cells or triangles that subjects 

must see or consider are dark parts in subgames CC, CD and DC in the second stage under 

BEWDS. Subject 1's own possible outcomes to be compared are the two lower left triangles of 

the left column. Hence, the number of triangles that each subject must see is four in each of 

subgames CC, CD and DC. That is, the remaining triangles are unnecessary for their decision 

making including the lower right cell.  

Let us consider the minimum informational or intellectual requirement to achieve 

CCyy under BEWDS. Consider subject 1. The information of the two lower left triangles of the 

left column in each of subgames CC, CD, and DD is enough to solve or choose either y or n in 

each subgame, but this is not enough to solve the two stage game since subject 1 cannot 

identify which cell would be realized without having the information of the two upper right 

triangles of the upper row at subgames CC and DC. In other words, subject 1 must use theory of 

mind to understand which strategy subject 2 chooses. If this is successful, subject 1 can 

construct the reduced normal form game out of two stages shown at the top in Figure 3. 
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During this construction, subject 1 understands that (s)he really needs to know for the decision 

making is the two lower left triangles of the left column in the reduced normal form game, i.e., 

subject 1's outcomes of subgames CC and DC. Using this information, subject 1 chooses C. In 

this sense, subject 1 must have backwardability that identifies chosen cells in subgames CC, CD 

and DD, and then finds his or her own two triangles corresponding to subgames CC and DC in 

the reduced normal form game. Finally, subject 1 also uses a simple heuristic: "the other subject 

thinks the same way as I think." For example, subject 1 who understands the outcome of subgame 

DC can find the outcome of subgame CD using this heuristic. These two simplified methods 

mitigate subjects' burden considerably.14,15 Of course, these facts do not necessarily support 

BEWDS in general since the facts are specific to the MC mechanism. 

In the next two sections, we describe our experimental investigation of the MC 

mechanism and its results. 

 

4. Experimental design 

Our experimental focus is payoff asymmetry in the PD game. We conducted 

experiments using an asymmetric PD game with the MC mechanism (AsymPDMC). For 

comparison with the data for AsymPDMC, we borrowed the data for a symmetric PD game 

with the MC mechanism (SymPDMC) and a symmetric PD game without the MC mechanism 

(SymPD) from Saijo et al. (2015). 

We chose an asymmetric payoff table in which cooperation cannot be implemented 

by the compensation mechanism in SPE, but can be implemented by the MC mechanism in 

BEWDS. The compensation mechanism also has two stages. It asks players to transfer money 

to the other player in the first stage, and then, both play a PD game. The monetary transfer 

                                                   
14 Player 1 must compare two numbers six times in order to decide (C,y) in Figure 3: two comparisons (i.e., my 

own a and d, and the other’s v and z) in subgame CC, one comparison (i.e., my own d and c, and the other’s 

choice does not matter since my own outcome is d regardless the choice of the other) in subgame CD, two 

comparisons in subgame DC, and one comparison between a and d in the reduced normal form game. This is 

quite a contrast when we find Nash equilibria of the two stage game. Since the number of information set is 5, 

each player has
5

2  strategies. Player 1 must compare 5
(2 1) numbers to find best responses for any given 

strategies of player 2. This indicates that player 1 must compare two numbers 5 5
(2 21) times. In order to find 

the Nash equilibria, player 1 must find the best responses of player 2, and hence must compare two 

numbers 5 5
(2 21) times. That is, the number of comparisons is 5 5

2 (2 21) 1984    which is more than 300 

times of 6, which might trigger qualitative difference between NE and BEWDS. See Saijo et al. (2015) for 

detailed comparison of several equilibrium concepts such as Nash equilibria, subgame perfect equilibria, 

neutrally stable strategies, and evolutionarily stable strategies for symmetric games.    
15 A reviewer suggested to introduce trembling-hand SPE or conditional cooperator in order to eliminate 
“bad” outcomes, but these are our future agenda.  



 
 

13 

 

must be done when the other player chooses cooperation in the PD stage. Varian (1994) 

designed the compensation mechanism in a general setting, and then Andreoni and Varian 

(1999) and Charness et al. (2007) conducted experiments using PD games. As Charness et al. 

(2007) showed, the compensation mechanism does not cover the entire class of PD games. In 

this sense, we chose the least favorable matrix (i.e., the Game 3 matrix in Charness et al. (2007)) 

to examine cooperation levels in our experimental design. Figure 5 shows the symmetric and 

asymmetric payoff matrices.16 The symmetric payoff table comes from Saijo et al. (2015) and 

the asymmetric payoff matrix comes from Charness et al. (2007).  

  

 

 

  

 

 

Figure 5. Symmetric and asymmetric payoff matrices. 

 

All the above-mentioned experiments were carried out in Osaka University during 

the period from November 2009 to December 2011. The AsymPDMC and SymPDMC 

experiments each had three sessions, and the SymPD experiment had one session. Twenty 

subjects participated in each session and no subject attended more than one session. We 

recruited these 140 undergraduate subjects with different majors through campus-wide 

advertisements. They were told that there would be an opportunity to earn money in a 

research experiment.  

At the beginning of the experiment, each subject was given a set of printed 

instructions and a record sheet. Instructions were read aloud by an experimenter. After that, 

subjects were given five minutes to ask private questions. Communication among subjects was 

prohibited, and we declared that the experiment would be stopped if it was observed. This 

never happened. There was no practice period. We used the z-Tree software (Fischbacher, 

2007) for the experiment. 

The experimental procedure was as follows. We assigned the 20 subjects seated at 

computer terminals in each session to 10 pairs. These pairings were anonymous and 

                                                   
16 In the experiment, we used payoff numbers that are 100 times the numbers in Figure 5 due to the exchange 
rate between the Japanese yen and the US dollar. 

                       Player 2                             Player 2   

   C D   C D  

 
Player 1 

C 14,14 7,17 
Player 1 

C 44,36 8,44  

 D 17,7 10,10 D 52,0 32,28  

            (i) Symmetric payoff matrix      (ii) Asymmetric payoff matrix 
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determined in advance in order not to pair the same two subjects more than once. Since most 

previous studies, such as those of Andreoni and Varian (1999) and Charness et al. (2007), have 

employed random matching among four to eight subjects (two to four groups),17 such 

repetition necessarily entails pairings of the same two subjects. Therefore, compared with 

previous experiments, this “complete” strangers design might reduce the possibility of 

cooperation among subjects.  

Let us explain the PDMC experiment. When the period started, each subject selected 

either A (defection) or B (cooperation) in the choice (or PD) stage and then inputted the choice 

into a computer and also noted it on the record sheet. After that, each subject explained the 

reason behind this choice in a small box on the record sheet. 18 The next step was the decision 

(or approval) stage. Based on the knowledge of the other subject’s choice, each subject chose to 

either “accept” or “reject” it and then inputted the decision into a computer, noted it on the 

record sheet, and explained his or her reasoning as before. Once subjects had finished the task, 

each could see “your decision,” “the other’s decision,” “your choice,” “the other’s choice,” 

“your points,” and “the other’s points” on the computer screen. However, neither the choices 

nor the decisions in pairs other than “your” own were shown on the computer screen. This 

ended one period. The PD experiment omitted the approval stage. After finishing all 19 

periods, every subject filled in a questionnaire.  

Each session lasted approximately 90 minutes including the time spent on answering 

the post-experiment questionnaires and payment. Subjects earned, on average, 5233 JPY (about 

43.61 USD, using 1 USD=120JPY), 4873 JPY (about 40.61 USD), and 3920 JPY (about 32.67USD) 

in AsymPDMC, SymPDMC, and SymPD sessions, respectively. 

 

5. Experimental results 

Figure 6 shows the time paths of cooperation rates over the 19 periods. The 

cooperation rate in each period is defined as the ratio of number of subjects choosing C to the 

total number of subjects. As shown, the cooperation rate of PD started at 15% in the first three 

periods, and then ranged between 5% and 10% in the next 16 periods. In contrast, the 

cooperation rate of SymPDMC was always above 90%, while that of AsymPDMC started at 

about 76.7% in the first period, rose to 86.7% in the second period, and then stayed above 90% 

                                                   
17 Charness et al. (2007) divided 16 subjects in one session into four separate groups, with four subjects in each 
group interacting only with each other over the course of the session. 
18 We had wished that we could analyze these reasons. However, most of the subjects did not write down 
reasons or just wrote “in order to earn more money”, which leaves analyses of this information uninformative. 
Hence, we do not report these results in the paper. 
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in the remaining 17 periods.  

The large gap in cooperation rates between PD and PDMC (either symmetric or 

asymmetric) was statistically supported by the proportion test. All the p values for comparing 

the cooperation rate of AsymPDMC or SymPDMC with that of PD are smaller than 0.001 in 

each period, which suggests that introducing the second stage after the PD game dramatically 

increases the cooperation rate in both symmetric and asymmetric PD games.  

For the comparison of AsymPDMC with SymPDMC, we ran the proportion test using 

both the data from each period and the data pooled over all periods. The two-tailed p values 

are reported in Table 1 (see the fourth column from the left). Generally, there is no significant 

difference in cooperation rates between asymmetric PD and symmetric PD games when the 

data were pooled over all periods (p = 0.7212). In the first two periods, the cooperation rate is 

significantly lower in the asymmetric environment. Thereafter, the cooperation rate in the 

asymmetric MC mechanism is not significantly lower than its symmetric counterpart. In fact, a 

significantly higher cooperation rate in AsymPDMC is observed in 3 periods out of the 

remaining 17 periods (specifically, periods 7, 14, and 15). In addition, Andreoni and Varian 

(1999) found a significant difference in cooperation rates between subjects with a relatively low 

payoff (41.8%) and their counterparts with a relatively high payoff (59.2%). However, as 

shown in Table 2 we did not find such significant differences in cooperation rates between 

these two types of subject. Moreover, compared to the cooperation rate with the compensation 

mechanism in Charness et al. (2007) the one in our AsymPDMC is obviously higher, which 

suggests the superiority of an MC mechanism over a compensation mechanism. 

With regard to the share of the (C,C) combination, Figure 7 shows its time paths over 

the 19 periods. Applying the proportion test, we found that the (C,C) share is significantly 

higher in either AsymPDMC or SymPDMC than in PD in each period (all p values < 0.001). 

Additionally, as indicated in the last column of Table 1, there is no significant difference in the 

share of the (C,C) combination between AsymPDMC and SymPDMC (p = 0.6031) when the data 

were pooled over all periods. However, if we look at the p values by period, we find that the 

(C,C) share is significantly lower in the asymmetric environment than in the symmetric 

environment in the first four periods. Thereafter, as with the cooperation rate, the (C,C) share 

of AsymPDMC is once again always statistically higher than or equal to that of its symmetric 

counterpart.  
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Figure 6. Cooperation rates by period. 
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Figure 7. Share of (C,C) by period. 
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Table 1. Proportion test results for AsymPDMC vs. SymPDMC. 

Period Cooperation rate  Share of (C,C) 

 AsymPDMC SymPDMC p value  AsymPDMC SymPDMC p value 

1 76.7% 95.0% 0.0040   56.7% 90.0% 0.0000  

2 86.7% 96.7% 0.0475   73.3% 93.3% 0.0033  

3 93.3% 98.3% 0.1705   86.7% 96.7% 0.0475  

4 93.3% 98.3% 0.1705   86.7% 96.7% 0.0475  

5 96.7% 96.7% 1.0000   93.3% 93.3% 1.0000  

6 98.3% 95.0% 0.3091   96.7% 90.0% 0.1432  

7 100.0% 95.0% 0.0794   100.0% 90.0% 0.0120  

8 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

9 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

10 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

11 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

12 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

13 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

14 100.0% 93.3% 0.0419   100.0% 86.7% 0.0034  

15 100.0% 95.0% 0.0794   100.0% 90.0% 0.0120  

16 98.3% 95.0% 0.3091   96.7% 93.3% 0.4022  

17 100.0% 96.7% 0.1538   100.0% 93.3% 0.0419  

18 98.3% 98.3% 1.0000   96.7% 96.7% 1.0000  

19 100.0% 98.3% 0.3153   100.0% 96.7% 0.1538  

All periods 96.7% 96.9% 0.7212   93.5% 94.0% 0.6031  

Notes: The reported p values are based on the two-tailed proportion test. 
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Table 2. Cooperation rates of subjects with low payoff and with high payoff in AsymPDMC. 

Period Subjects with relative low payoff Subjects with relative high payoff p value 

1 80.0% 73.3% 0.5416  

2 83.3% 90.0% 0.4475  

3 93.3% 93.3% 1.0000  

4 93.3% 93.3% 1.0000  

5 100.0% 93.3% 0.1503  

6 100.0% 96.7% 0.3132  

7 100.0% 100.0% –   

8 96.7% 100.0% 0.3132  

9 96.7% 100.0% 0.3132  

10 96.7% 100.0% 0.3132  

11 100.0% 100.0% –   

12 100.0% 100.0% –   

13 100.0% 100.0% –   

14 100.0% 100.0% –   

15 100.0% 100.0% –   

16 96.7% 100.0% 0.3132  

17 100.0% 100.0% –   

18 100.0% 96.7% 0.3132  

19 100.0% 100.0% –   

All periods 96.7% 96.7% 1.0000  

Notes: The reported p values are based on the two-tailed proportion test. A “–“ means the 

proportion test cannot be performed because the cooperation rates in both conditions are 

100.0% 

 

 

6. Concluding remarks 

We have shown theoretically that the MC mechanism implements cooperation in 

BEWDS for QD games and that BEWDS-implementable games are QD games. QD games 

include not only PD games but also coordination games. Furthermore, the mechanism cannot 

implement cooperation in SPE. 

The MC mechanism is essentially a unanimous voting rule for two players, and it can 
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be interpreted as a “minimum” communication device to achieve cooperation. In the first stage, 

each player reveals their choice of C or D. Then knowing the other’s choice, each chooses y or n. 

If both choose y, the outcome is what they chose in the first stage; otherwise, the outcome is 

(D,D). This procedure can be a natural way to avoid conflict, such as a PD or a coordination 

situation, in daily life. Using functional near-infrared spectroscopy (fNIRS), Nagatsuka, 

Shinagawa, Okano, Kitamura, and Saijo (2013) found that compared with the PD game, 

subjects made their choices with less stress when using the MC mechanism. We also found 

experimentally that except for first few periods, the MC mechanism works well in an 

asymmetric environment.  

Masuda et al. (2014) expanded the idea of the MC mechanism to public good 

provision and showed that the minimum approval mechanism implements an efficient 

allocation in BEWDS both theoretically and experimentally. Furthermore, Huang et al. (2014) 

designed a simplified approval mechanism in the spirit of the MC mechanism in a social 

dilemma and showed theoretically and experimentally that it implements cooperation in 

BEWDS when there are at least two players. However, designing a reasonable approval 

mechanism to implement cooperation with more than two choices and players is still an open 

question that needs to be answered. 
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