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Abstract 

This paper proposes an alternative explanation for the sandwich property in voluntary 

contribution mechanism experiments. This property refers to the phenomenon of experimental 

data being “sandwiched” between a Nash equilibrium above the midpoint of the endowment 

and a Nash equilibrium below this midpoint. The explanation is in terms of the instability of the 

system with best response dynamics, i.e., “pulsing” behaviors, in nonlinear environments rather 

than the quantal response equilibrium analysis. Since most experimental models are unstable in 

quasilinear environments (where the utility function is linear in a private good and nonlinear in 

a public good), and Cobb–Douglas environments, using equilibrium analysis is problematic. 
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1. Introduction 

A system in which players voluntarily contribute a part of their endowments for the 

provision of a public good is called a voluntary contribution mechanism (VCM). Even if non-

contribution is the dominant strategy when all players have linear utility functions, researchers 

have observed significantly positive contributions, which gradually decrease toward the end of 

sessions (for a survey, see Ledyard (1995)). On the other hand, even if contributing the entire 

endowment is the dominant strategy, this is rarely observed.1 The deviations from "rational" 

strategies have been one of the central themes in the provision of public goods. Experimental 

economists have been attributed these observations to characteristics such as altruism, warm-

glow, equity, and reciprocity (for a survey, see Chaudhuri (2011)). 

A few experimental economists started investigating properties of the VCM with nonlinear 

utility functions. With nonlinearity, rational strategies are in the interior rather than on the 

boundaries (for a survey, see Laury and Holt (2008)). Innovators such as Sefton and Steinberg 

(1996), Isaac and Walker (1998) and Laury, Walker, and Williams (1999) used quasilinear utility 

functions that are linear in player i’s private good consumption ix  and nonlinear in a public 

good y, that is, ( , ) ( ).i iu x y x t y  2
 The rationale behind this formulation is that the private good 

is money, and hence its marginal utility is constant, while the marginal utility of the public 

good decreases, so that the ( )t y  part is nonlinear.  

One of their findings is the sandwich property named by Anderson, Goeree, and Holt 

(1998). Isaac and Walker (1998) ingeniously designed three treatments using quasilinear utility 

functions: one in which the symmetric Nash equilibrium is below the midpoint of the 

endowment, a second in which it is exactly at the midpoint, and a third in which it is above the 

midpoint. If the equilibrium is below the midpoint, over investment occurs relative to the Nash 

equilibrium; if it is at the midpoint, the data are also clustered around the midpoint; and if it is 

above the midpoint, under investment occurs. That is, the Nash equilibria sandwich the data. 

The data from Sefton and Steinberg (1996), and Laury, Walker, and Williams (1999) also support 

part of the sandwich property (that over investment occurs when the Nash equilibrium is below 

the midpoint of the endowment). While the sandwich result was originally found for a linear 

environment, these authors’ findings confirmed that the result holds for a quasilinear 

environment as well. 

Anderson et al. (1998) explained the sandwich property using “errors.” They showed that 

each player has a normal density function which peaks at the symmetric Nash equilibrium. If 

                                                           

1 See Saijo and Nakamura (1995), Brunton, Hasan, and Mestelman (2001), and Chun, Kim, and Saijo (2011) 

for experiments in which contributing the entire endowment is the dominant strategy. 

2 Although Isaac, McCue, and Plott (1985) and Isaac and Walker (1991) used quasilinear utility functions, 

zero contribution was the dominant strategy due to their choice of parameters. 
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the equilibrium is below the midpoint, the weight on bigger than equilibrium contributions is 

higher than the weight on contributions smaller than the equilibrium amount, since the density 

function should be truncated at zero contributions. That is, the average contribution should be 

more than the equilibrium contribution. The same argument can be applied to cases where the 

equilibrium is “at” or “above” the midpoint.  

There has been related work using Cobb–Douglas (CD) utility functions. This includes 

Andreoni (1993), Chan, Mestelman, Moir, and Muller (1996), Cason, Saijo, and Yamato (2002), 

and Sutter and Weck-Hannemann (2004). An advantage of using this type of utility function is 

the avoidance of multiple Nash equilibria in the VCM under quasilinear utility functions. That 

is, the Nash equilibrium is unique with CD utility functions. The design of all these papers falls 

into the “below” category (the Nash equilibrium was below the midpoint of the endowment), 

but the data are very close to the Nash equilibrium. This difference between the quasilinear and 

the Cobb–Douglas environments has created a new puzzle.3 

 Recently, Saijo (2014) has shown, using best response dynamics, that the VCM is unstable 

when utility functions are quasilinear4. It is also unstable with Cobb–Douglas utility functions, 

given some mild conditions on the slope of the best response function and the number of 

players. This is quite a contrast to the linear utility case, where the existence of a dominant 

strategy guarantees stability. In this respect, the designs of all the studies mentioned above 

except for Cason, Saijo, and Yamato (2002) fall into this unstable category. If they are unstable, 

using equilibrium analysis is problematic. 

The current paper uses this instability approach to explain the puzzling facts noted above. 

If the system is unstable, players’ choices of strategies tend to pulse. The average contribution 

with pulsing behavior is a key factor in explaining the data. Consider the quasilinear case. If the 

symmetric Nash equilibrium is below the midpoint of the endowment, the average contribution 

with pulsing behavior is always larger than the equilibrium. If it is at the midpoint, the average 

contribution is the same as the equilibrium contribution. If it is above the midpoint, the average 

contribution is smaller than the equilibrium contribution. On the other hand, in all experiments 

with Cobb–Douglas utility functions, the average contribution is the same as the equilibrium 

contribution. That is, the instability approach provides an answer to the puzzle of why the 

sandwich property may not hold for Cobb–Douglas environments, while holding for 

quasilinear environments. 

                                                           

3 Another type of nonlinear utility function is nonlinear with respect to the public good and linear with 

respect to the private good. I will consider the role of this type in the conclusion. 

4 See also Saijo and Kobayashi (2014). 
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The organization of the paper is as follows. I consider the model with best response 

dynamics and quasilinear utility functions in section 2. Section 3 considers Cobb–Douglas 

utility functions. Section 4 suggests avenues for further research. 

 

2. The model with best responses: the quasilinear case 

Let x be a private good and y be a public good. The production function of the public good 

is y = f(x) = x. That is, for example, one hour of labor input produces one meter of road. All 

players have the same endowment w, and each must decide to divide w into their own 

consumption of private good ix  and contribution is  to the public good. That is, 
1

n

jy s
where n is the number of players and n is at least two. This system is called the voluntary 

contribution mechanism (VCM). 

Following Isaac and Walker (IW) (1998), I suppose that each player has the same 

quasilinear utility function ( , ) ( )i iu x y x t y  . Let i jj i
s s 

 and ( , ) ( , )i i i i iu w s s s v s s    . 

Then a list of contributions 1
ˆ ˆ ˆ( ,..., )ns s s  is a Nash equilibrium if for all i, ˆ ˆ ˆ( , ) ( , )i i i iv s s v s s 

for all [0, ].is w  Define the best response function as  

 

( )ir s   arg max ( , )| [0, ]
i

i i i
s

v s s s w    

 

. Since v and w are the same for all players, all players have the same best response function. 

Since ( , ) ( ),i i i i iv s s w s t s s      the first order condition is / 1 ( ) 0.i i iv s t s s        That is, 

1(1)i is s t 


    for all i which shows that  1

1
ˆ ˆ( ,..., ) : (1)  and 0n j js s t s w s     is the set of 

Nash equilibria. IW prepared the following three best response functions. 

 

(1-1) 48,i is s    (1-2) 124,  andi is s   (1-3) 200.i is s    

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Best response functions from Isaac and Walker (1998). 
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Consider Figure 1. The horizontal axis represents the sum of the other players’ 

contributions and the vertical axis represents the contribution of player i’s response to .is  Since 

w = 62, and n = 4 in IW, the three best response functions in Figure 1 are a-c, a’-c’, and a”-c”. 

Consider (1-1). If 48,is  player i’s contribution is  should be zero, so that the best response 

function has a kink at a on the horizontal axis. Consider (1-2). Since player i cannot contribute 

more than w, the best response function has a kink at c’. If 124,is  player i’s contribution is  

should be zero, so that the best response function has a kink at a’. Consider (1-3). Since player i 

cannot contribute more than w, the best response function has a kink at c”. Since 

186 62 3is     is impossible, player i’s best response function stops at a”. 

Although multiple Nash equilibria exist in these cases, there is a symmetric Nash 

equilibrium for each case. The slope of line 0-v is 1/3 and hence the symmetric Nash 

equilibrium is at the intersection of the best response line and 0-v. That is, n1, n2, and n3 are 

symmetric Nash equilibria for (1-1), (1-2), and (1-3) respectively.  

Let us consider a simple dynamic process for the VCM. At time t, let player i’s choice of 

contribution be t
is . Suppose that player i chooses ( )t

ir s  at time t+1, where t = 1, 2,… That is, I 

assume that every player chooses the best response to the sum of strategies chosen by the other 

players at time t. Then the system of simultaneous difference equations  
1 ( )t t

i is r s

 (i = 1,2,...,n) 

is locally stable at the Nash equilibrium ŝ  if the system 
1 ˆ( )t t

i i i is r s s k

 
   (i = 1,2,...,n) is stable, 

where ˆ ˆ ˆ( ) .i i i ik s r s s 
   That is, the system is a linear approximation to the original system at 

the Nash equilibrium.5 Then, Saijo (2014) showed the following property.6 

 

Property 1. The system 
1 ( )t t

i is r s

 (i = 1,2,...,n) is unstable. 

 

Choose any 
1 .s  For example, choose case (1-2) and let 

1 (20,30,40,50).s   Then 

1 1 1 1 1
1 2 3 4( , , , )s s s s s     = (120, 110, 100, 90). The best response to 

1s  is 
2s = (4, 14, 24, 34) and hence 

2s  = (72, 62, 52, 42). The best response to 
2s  is 

2s = (52, 62, 72, 82). Then 
3s  = (216, 206, 196, 186). 

The best response to 
3s  is 

3s  = (0, 0, 0, 0). Clearly, 
4s  = (62, 62, 62, 62). After 

4 ,s the system 

cycles between (0, 0, 0, 0) and (62, 62, 62, 62). Since 0 and 62 are the boundaries of the possible 

contributions, I call this cycle between the two boundaries a boundary cycle. I conduct a simple 

simulation using Mathematica with random initial values for period 1. From the data, I find the 

first period in which either (0, 0, 0, 0) or (62, 62, 62, 62) is realized. This is period 3 in the above 

example. Among 100 simulation sessions, the relevant period was period 2 for 16 sessions, 

                                                           
5 As (1-1), (1-2), and (1-3) show, the best response functions are linear and hence no linear approximation 

is necessary.  
6 This property assumes that the utility function is quasilinear, of the form ( , ) ( ).i iu x y x t y  See Saijo 

(2014) for other cases.  
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period 3 for 38 sessions, period 4 for 26 sessions, period 5 for 15 sessions, period 3 for 3 sessions, 

period 7 for 1 session, and period 1 for the randomized first session that is a Nash equilibrium, 

i.e., (5, 11, 62, 46). Figure 2 is an example when the relevant period is period five. The horizontal 

axis denotes periods, and the vertical axis denotes best responses where the numbers in period 

1 are chosen randomly, in this case (0, 24, 51, 54). 

 Consider the prediction of the best response dynamics and consider case (1-1). 

Conducting an analysis similar to that for case (1-2), I find that the contribution vector reaches 

either (0, 0, 0, 0) or (48, 48, 48, 48) within a few periods. Thus, the average contribution of each 

player should be 24 = (0+48)/2. That is, this is point b1, the midpoint between a and c in Figure 

1. Although both a and c represent best responses to the sum of the other players’ contributions, 

the average best response point b1 with instability does not imply that the player responds to 24. 

This is not the sum of the other players’ contributions, which should be 72 (=24x3). That is, a 

player who follows pulsing dynamics behaves on average as if choosing a point between a andc. 

The deviation from b1 can be attributed to the distribution of the weights of a and c. That is, the 

average from experimental data should be a convex combination of a and c. For this reason, I 

put b1 on [a, c]. Similarly, it is b2 for case (1-2) that is the midpoint between a’ and c’ and it is b3 

for case (1-3) that is the midpoint between a” and c”. The average contributions are 31 for case 

(1-2) and 38 for case (1-3). That is, the piecewise linear line 0-b1-b2-b3-v represents the prediction 

of the pulsing dynamics. Notice that both Nash and pulsing dynamics predictions coincide for 

case (1-2), i.e., n2 = b2. 

 

 

 

 

 

 

  

 

 

 

Figure 2. Best response dynamics starting from (0, 24, 51, 54) for Case (1-2). 

 

 Comparing the two lines 0-v and 0-b1-b2-b3-v in Figure 1, the vertical height of b1 is larger 

than that of n1, the vertical height of b2 is equal to the height of n2, and the vertical height of b3 is 

larger than that of n3. That is, I have a version of the sandwich property from the viewpoint of 

pulsing dynamics. 

Period 

Best responses 
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 ( , )d
i id b b  ( , )d

i id n n  
Case (1-1) 4.5 48.1 
Case (1-2) 5.1 11.4 
Case (1-3) 9.3 10.2 
Sum 18.9 69.7 

 

 

 

 

 

 

Property 2. Suppose that all players have identical quasilinear utility functions and endowments. Then 

(i) if the symmetric Nash equilibrium contribution is less than half of the endowment, the average 

contribution with pulsing dynamics is always larger than the symmetric Nash equilibrium contribution; 

(ii) if the symmetric Nash equilibrium contribution is equal to half of the endowment, the average 

contribution with pulsing dynamics is equal to the symmetric Nash equilibrium contribution; and  

(iii) if the symmetric Nash equilibrium contribution is more than half of the endowment, the average 

contribution with pulsing dynamics is always smaller than the symmetric Nash equilibrium 

contribution. 

 

Consider the data from IW. The average contributions are 27.2 for case (1-1), 27.4 for case 

(1-2), and 44.6 for case (1-3). Consider case (1-1) in Figure 1. The prediction of pulsing dynamics 

should be between a and c, and the average contribution is 27.2; this datum should be 1
db  on line 

a-c where the superscript d stands for datum. On the other hand, the prediction for the 

symmetric Nash equilibrium should be on line 0-v, and hence 1
dn  represents the Nash 

prediction. Similarly, 2 2 3 3, , , and d d d db n b n  are shown in Figure 1.  

 

 

 

 

 

 

Table 1. The distance between data and predictions. 

 

 It is useful to use the Euclidean distance to measure the gap between the data and the 

predictions. Let d(x, y) be the Euclidean distance between x and y. Then Table 1 shows the 

distances in the three cases. Comparing the distances, I have the following property. 

 

Property 3. The average in the IW experiment is closer to the prediction using the pulsing dynamics 

approach than to the prediction of the symmetric Nash equilibrium, for all three cases. 

 

 An interesting difference between the two predictions is illustrated by case (1-3). Since the 

average of experimental data (44.6) is smaller than the Nash equilibrium prediction (50), this 

suggests under contribution if the symmetric Nash equilibrium contribution is more than the 

midpoint of the endowment. On the other hand, the average (44.6) is larger than the pulsing 

dynamics prediction (38), which can be interpreted as over contribution. Although the average 
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of the data in case (1-1), i.e., 27.2, is larger than both predictions, i.e., 12 for Nash and 24 for 

pulsing dynamics, the same reversal would happen if 1
db  were between n1 and b1. 

 The data of Sefton and Steinberg (1996) (who first used quasilinear utility functions in a 

VCM experiment) and Laury, Walker, and Williams (1999) (who confirmed the absence of an 

endowment effect in quasilinear environments) also support Property 3. Sefton and Steinberg 

(1996) use the following environment. The best response function is 8,i is s   n = 4, w = 8, 

the symmetric Nash equilibrium contribution is 2, and the symmetric Pareto efficient 

contribution is 7. They use ten rounds of stranger matching. Laury, Walker, and Williams (1999) 

use the following environment. The best response function is 100,i is s   n = 5, w is either 

125 or 200, and the symmetric Nash equilibrium contribution is 20. Table 2 summarizes these 

experiments. All symmetric Nash equilibrium contributions are less than half of the 

endowments, and the average contribution is always larger than the Nash contribution. The 

pulsing dynamics contribution is 4 for Sefton and Steinberg (1996) and it is 50 for Laury, 

Walker, and Williams (1999). The distances between the data and the Nash equilibrium 

contributions are from seven to thirteen times larger than the distances between the data and 

the pulsing dynamics contributions.  

 

 

 

 

 

 

 

 

Table 2. Experiments by Sefton and Steinberg and Laury, Walker, and Williams. 

 

3. The Cobb–Douglas case 

Andreoni (1993), Chan, Mestelman, Moir, and Muller (CMMM) (1996), Sutter and Weck-

Hannemann (2004), and others used Cobb-Douglas utility functions in VCM experiments. The 

basic reason is that these models have a unique Nash equilibrium, which is quite a contrast to 

the quasilinear environment. Suppose that players have identical utility functions 

1( , ) ,  (0,1)i iu x y x y    and identical endowments. Then the best response function is

(1 )i is s w    .7 Saijo (2014) shows the following property. 

                                                           

7 Since 
1( , ) ( ) ( ) ,i i i i iv s s w s s s 

    the first order condition is 
1/ (( )/( ))i i i iv s s s w s 

       

(1 )(( )/( )) 0.i i iw s s s 

      Then ( )/( ) (1 )/ ,i i is s w s     and hence (1 ) .i is s w     

 n w Sym. 
Nash 

Pulsing 
dynamics 

Average 
Cont. 

( , )dd b b
 

( , )dd n n  

Sefton-Steinberg (96) 4 8 2 4 4.42 0.59 7.66 
Laury-Walker-
Williams (99)* 

5 125s 20 
 

50 62.47 17.64 175.10 
200s 71.28 30.09 211.43 
125d 43.31 9.46 96.11 
200d 44.06 8.40 99.20 

* w is either 125 or 200. “s” stands for summary information on the payoff structure and “d” 
stands for detailed information on the payoff structure. 
   



 

 

9 

 

 

Property 4. Suppose that the utility function is a Cobb–Douglas type. Then  

(i) if n = 2, the system 
1 ( )t t

i is r s

 (i = 1, 2,...,n) is asymptotically stable;8 and 

(ii) if 3n   and 1/( 1),n    the system is asymptotically stable. 

 

As Table 3 shows, Andreoni (1993), CMMM (1996), and Sutter and Weck-Hannemann (2004) 

used n = 3 and 1/2,   and hence 1/( 1).n    That is, their systems are not stable. The 

instability property differs from the quasilinear utility case. Consider the case with CMMM. 

Since w = 20, the best response function is (1/2) 10i is s    which is a-c in Figure 3. The Nash 

equilibrium is unique and it is 1 2 3( , , ) (5,5,5)s s s   solving the three best response functions 

simultaneously. It is n in Figure 3, that is at the intersection of a-c and 0-v. Choose any 
1 .s  For 

example, let 
1 (3,7,9).s   Then 

1 1 1 1
1 2 3( , , )s s s s    = (16, 12, 10). Since the slope of the best response 

is 1/2, 
2s = (2, 4, 5) and hence 

2s  = (9, 7, 6). The best response to 
2s  is 

2s = (5.5, 6.5, 7). Since 

CMMM used only integer announcements, let 
2s = (6, 7, 7), rounding the numbers. Then 

3s  = 

(14, 13, 13) and 
3s = (4, 4, 4). Clearly, 

4s  = (6, 6, 6). After 
4 ,s the system cycles between (4, 4, 4) 

and (6, 6, 6). Since 4 and 6 are the interior points of the possible contributions, I call this cycle 

between two interior points an interior cycle. Figure 4 shows an interior cycle starting from (2, 8, 

10). I conduct 100 simulation sessions using Mathematica with random initial values for period 

1. Ninety-seven sessions got into interior cycles, one session got into the boundary cycle, i.e., 

between 0 and 10, one session was a Nash equilibrium from the beginning, and one session got 

into a Nash equilibrium starting from non-Nash initial values.9  

Consider predictions using pulsing dynamics. Since the contribution vector reaches either 

an interior or a boundary cycle within a few periods, the average contribution of each player 

should be 5. The interior cycle between (4, 4, 4) and (6, 6, 6) is the cycle between 
ab  and 

cb  in 

Figure 3. The midpoint between 
ab  and 

cb  is b which is the prediction of pulsing dynamics. 

That is, the Nash and pulsing dynamics predictions coincide. The average contribution in 

CMMM is 5.3, and 
dn  and 

db  show the location of the data based upon the Nash and pulsing 

dynamics approaches respectively. Then, ( , ) ( , ) 0.58d dd n n d b b   and the data are very close to 

                                                           

Although CMMM (1996) used ( , ) ( ) ( ) ( ),i i i i i i i iv s s w s s s s s s         the best response function is the 

same as (1 )  with 1/2.i is s w       

8 Hirsch and Smale (1974) give an intuitive interpretation of asymptotical stability of differential 

equations. “An equilibrium x  is stable if all nearby solutions stay nearby. It is asymptotically stable if all 

nearby solutions not only stay nearby, but also tend to  x ” (p.180). 

9 Due to the integer announcements, CMMM found that (4, 5, 6) is also a Nash equilibrium. If 

announcements are real numbers, it is easy to show that only two cases occur. One is the case where the 

sequence { }is  converges to the Nash equilibrium (5, 5, 5) if 1 2 3 15.s s s    Otherwise, the sequence gets 

into either interior or boundary cycles.  
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n and b. Other best response functions such as a’-c’ and a”-c” show that both Nash and pulsing 

dynamics yield the same prediction. That is, the discrepancy between 0-v and 0-b1-b2-b3-v in 

Figure 1 is not replicated in Figure 3.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Best response functions from Chan, Mestelman, Moir, and Muller (1996). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Best response dynamics starting from (2, 8, 10). 

 

 

 

 

 

 

Table 3. Experiments using Cobb-Douglas utility functions. 

 

Although the Nash equilibrium contribution is less than half of the endowment for every 

case in Table 3, the average contribution is close to the Nash equilibrium. Cason, Saijo, and 

Best responses 

Period 

 n w Nash= 
Pulsing d. 

Average 
Cont. 

( , )dd b b =
( , )dd n n  

Andreoni (93) 3 7 3 2.78 0.49 
CMMM (96) 20 5 5.3 0.58 

Sutter and Weck-Hannemann (04) 7 3 3.18 0.40 
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Yamato (2002) used n = 2, w = 24, and 0.47   and hence the system is stable. They observed 

that the average contribution is 7.37, close to 8, which is the Nash equilibrium contribution. 

Since their system is asymptotically stable, the Nash and the best response dynamics 

predictions coincide. These observations lead to the following property. 

 

Property 5. If the Nash and the best response dynamics predictions coincide, experimental data are close 

to the prediction. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Truncated normal distributions using quantal response equilibrium analysis. 

 

In order to understand the sandwich property and altruism, Anderson, Goeree, and Holt 

(1998) introduced errors in their quasilinear utility functions, in which the public good term is 

quadratic, following quantal response equilibrium analysis introduced by McKelvey and 

Palfrey (1995). This process involves first setting up player i’s expected payoff when others’ 

strategies are stochastic. Second, it requires finding the density of player i’s strategies given the 

densities of other players’ strategies. Then, this process yields a truncated normal distribution 

whose mean is the symmetric Nash equilibrium strategy.10 Consider Figure 5. The horizontal 

axis shows the best responses from 0 to 62. 12 is for n1, 31 is for n2, and 50 is for n3. The 

propensities to make errors go down from 1f  to 3.f  Since the area on the right hand side of 1f  

is larger than that on the left hand side of 1 ,f  a player tends to contribute more than 12. If the 

symmetric Nash equilibrium is at 31, then the areas on both sides are the same, so a player 

                                                           

10 For further details, see pp. 312–3 and appendix A in Anderson, Goeree, and Holt (1998).  
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chooses around 31. If it is at 50, then the area on the left hand side is larger than that on the right 

hand side; thus, a player tends to choose less than 50. 

Applying the same procedure to the log linear form of the Cobb–Douglas utility function, 

I can obtain truncated normal distributions corresponding to Figure 5. That is, the average 

contribution in every case with a Cobb–Douglas utility function should have been more than 

the Nash equilibrium. However, as Property 5 shows, it is very close to the Nash equilibrium. 

As Anderson, Goeree, and Holt (1998) noticed, their approach is suitable for static equilibrium 

analysis, but not for dynamic analysis. In order for the static equilibrium analysis to be 

meaningful, the system must be stable. 

 

4. Concluding Remarks 

 I showed the sandwich property using the instability of best response dynamics, rather 

than through equilibrium analysis, since the VCM system is not necessarily stable. Previous 

experimental data are consistent with theoretical average data incorporating pulsing behavior.  

 The data of Sefton and Steinberg (1996), Isaac and Walker (1998), and Laury, Walker, and 

Williams (1999) covered all three cases, i.e., with the Nash equilibrium “below,” “at,” and 

“above” the midpoint of the endowment in a quasilinear environment. However, no 

experiments have looked at cases where the equilibrium contribution is “at” or “above” the 

midpoint of the endowment in the Cobb-Douglas utility function environment.  

Although the instability approach explains experimental data with nonlinear utility 

functions, this approach cannot be applied to a linear environment. This is because the VCM is 

always stable in a linear environment due to the existence of a dominant strategy. Altruism, 

warm-glow, reciprocity, equity, and so on are the central foci explaining deviations from 

“rational” choices in the linear environment, but it seems that they do not play major roles and 

some of them might partially disappear due to instability in nonlinear environments. Further 

research on these issues is needed. 

 There is another type of nonlinear utility function that many experimental economists 

have been using. These functions are of the form ( , ) ( ) ,i iu x y h x y   that is, nonlinear with 

respect to ix  and linear with respect to y. They have been used by Sefton and Steinberg (1996), 

Keser (1996), Falkinger, Fehr, Gächter, and Winter-Ebmer (2000), van Dijk, Sonnemans, and van 

Winden (2002), Uler (2011), Maurice, Rouaix, and Willinger (2013) and Cason and Gangadharan 

(2014), among others.11 This utility function incorporates the peculiar assumption that the 

marginal utility of the private good decreases, but the marginal utility of the public good is 

constant. An advantage of this utility function is that each player has a dominant strategy in the 

                                                           

11 There are many other experimental papers in this category and the number has been growing.  
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VCM, as in a linear environment. Since a dominant strategy exists, the stability of the best 

response dynamics is guaranteed. The observations in this category are similar to the 

observations in a linear environment. From the viewpoint of stability analysis, an important 

research topic is to learn what type of utility functions players really have. That is, external 

validity of utility functions in the provision of public goods should be explored.  
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