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Abstract 

This paper shows that second thoughts are not an innocent device in our daily life, 

but is human wisdom that plays an important role in resolving problems such as 

social dilemmas. We design a simple mechanism to achieve Pareto efficiency in 

social dilemmas, and then compare the performance of this mechanism with and 

without second thoughts. First, second thoughts change the payoff structure of the 

game in favor of cooperation. Second, this mechanism is robust even when players 

deviate from a payoff maximizing behavior. 
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1. Introduction 

This paper is part of our endeavor to find a simple and natural solution to social 

dilemma. Since playing the social dilemma game once does not solve the problem, it is 

natural to add some stages before or after the game. This necessarily entails sequential 

rationality such as subgame perfection. Moore and Repullo (1988), in their path breaking 

and influential paper, constructed mechanisms and found conditions on social goals to 

implement them in subgame perfect Nash equilibrium. However, as Fehr, Powell, and 

Wilkening (2014) recently show, the experimental performance of these mechanisms is 

rather limited.1  

On the other hand, Masuda, Okano, and Saijo (2014) designed a two stage 

mechanism called the minimum approval mechanisms to implement a Pareto efficient 

allocation in public provision problems when the number of players is two, and then 

showed that it works well even from early periods experimentally. They found that 

subjects understood the subgame perfection part well, and used the elimination of weakly 

dominated strategies (EWDS) instead of Nash equilibria at each subgames. In other words, 

they found an affinity among the mechanism, subgame perfection and EWDS. A basic 

question of the current paper is whether this approach works well beyond two players.  

In an unpublished paper, Huang, Masuda, Okano, and Saijo (2014) designed a 

mechanism to solve a social dilemma when each player chooses cooperation (C) or 

defection (D). In the first stage, each player chooses either C or D. Knowing the choices in 

the first stage, all C players can change from C to D in the second stage unless all choose C. 

If a player chooses D in the first stage, then the other C players will change to D in the 

second stage. Once players understand this logic, no player would take D in the first stage, 

and hence the mechanism implements cooperation. They conducted a series of experiments 

and found that the performance of the mechanism is limited in early rounds if the number 

of players is at least three. In order to overcome this problem, we introduce second 

thoughts, as a new tool in implementation theory, avoiding complication of the 

mechanism.  

Although second thoughts, allowing players to reconsider their decisions after 

observing them, have been widely used in our daily life, no theoretic analysis has been 

done. In the Huang et al. mechanism, we add one stage called the second thought stage 

between the two stages. All D players have a chance to change from D to C in the second 

thought stage unless all choose D in the first stage. After a player chose D in the first stage, 

                                                        
1 Varian (1994) constructed a simple mechanism called the compensation mechanism that 
implements a social goal in subgame perfect Nash equilibrium, but the experimental 
performance is limited as Andreoni and Varian (1999) showed.   
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the player notices that the other C players will change to D later. Understanding this logic, 

the D player changes to C in the second thought stage. What we find is that second 

thoughts in social dilemma works very well theoretically. First, second thoughts change the 

payoff structure of the game in favor of cooperation. Second, second thoughts make 

mechanisms robust even when players deviate from EWDS.  

In the following, we show the two player case in section 2, the three player case in 

section 2, and then the general case in section 3. Section 4 is for further research.  

  

2. The Simplified Approval Mechanism with Second Thoughts for n = 2. 

Let n 2 be the number of players, and each player has endowment w > 0. Each 

player must choose to contribute either the entire w for the production of a public good y or 

nothing. The production function of y is linear, namely y =mw where 1 >  > 1/n, and m is 

the number of players who choose cooperation (C) (i.e., those that contribute the entire w). 

Hence, the payoff of a player who chooses no contribution (defection or D) is 

( 1) ,mw w m w     while the contributor’s payoff is mw. We term a player who 

chooses C (D) as a C (D) player, respectively. 

We consider a mechanism that has a new stage after the PD game, due to Huang et 

al. (2014). If all participants are either C players or D players, the game ends. The payoff of 

a player in the former case is nw and that in the latter case is w. If the number of C players 

is at least one and at most n-1, then only C players can proceed to the second stage, in 

which they have the opportunity to change their decisions from C to D. This mechanism is 

called the simplified approval mechanism or the SAM in short. A natural behavioral procedure 

found in previous experiments on approval mechanisms is subgame perfect elimination of 

weakly dominated strategies (SPEWDS), which is also adopted, for example, in Kalai (1981). 

This requires two properties: (i) subgame perfection and (ii) that players do not choose 

weakly dominated strategies in each subgame and in the reduced normal form game. 

 

 

 

 

 

 

 

 

Figure 1: The SAM and its reduced normal form game when n = 2. 
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Figure 1 illustrates the case of n = 2,  = 0.7, and w = 10. Players 1 and 2 face a 

prisoner’s dilemma game in the first stage. Knowing that player 2 chose D in the first stage 

in subgame a, player 1 proceeds to the second stage and faces a choice between C and D. 

Player 1 chooses D in subgame a since 10 dominates 7, or 10 > 7. Similarly, player 2 chooses 

D in subgame b. Then, as the reduced normal form game on the right hand side of Figure 1 

shows, player 1 chooses C after eliminating weakly dominated strategy D. Similarly, player 

2 also chooses C in the first stage and hence, (C,C) is the outcome. Hereafter, a strategy 

profile with parentheses, such as (C,C), represents the choice in the reduced normal form 

game and a sequence of choices, such as CDC, shows a strategy path. Huang et al. (2014) 

showed the following properties of the SAM. 

 

Proposition 1. (i) The simplified approval mechanism implements cooperation in SPEWDS and (ii) 

the simplified approval mechanism cannot implement cooperation in subgame perfect equilibrium 

(SPE). 

 

“Cooperation” in Proposition 1 indicates that all players choose C in the reduced 

normal form game. As the reduced normal form game in Figure 1 shows, (D,D) is also a 

subgame perfect equilibrium (SPE) outcome and hence, the SAM cannot implement 

cooperation in SPE. 

 

 

 

 

 

 

 

 

 

 

                                         

Figure 2: Success probability functions when n = 2. 

 

Thus far, we have supposed that every player chooses the alternative under 

SPEWDS, but we consider the cases where some player might deviate from it. For 

CSAM(2,q) = (1-q)2 

CSAMST(2,q)  

= (1-q)2 + 2q(1-q)2  

q 

Success Probability 



 

5 
 

simplicity, we assume that every player deviates with a probability of q, with 0 < q < 1 at 

each node. As shown in Figure 1, the success probability achieving (14,14) that follows path 

CC is (1-q)2. Let CSAM(n,q) be the success probability function of the SAM, where n is the 

number of players. Then, CSAM(n,q) = (1-q)n. Figure 2 shows the case of n = 2. The horizontal 

axis displays the probability of deviation and the vertical axis the probability of all players 

cooperating. Since CSAM(2,0)/q = -2 and CSAMST(2,0,1)/ q = 0, the success probability of 

the SAM decreases as q rises around zero, whereas the success probability of the SAMST 

stays at a probability of one as q increases around zero. Next, fix any q. Since CSAMST(2,q,∙) is 

always higher than CSAM(2,q) because of 2q(1-q) 2 except for q = 0 or 1, the success 

probability of the SAMST is always better than that of the SAM excluding the end points. 

That is, the SAMST is relatively robust enough to handle deviation by players. 

Huang et al. (2014) conducted experiments of the SAM with each group consisting of 

three subjects. In total, 63 subjects played the SAM for 15 periods. The groups were formed 

randomly in each period. The cooperation rates for the first four to seven periods were 

between 64.9% and 77.7% and they rose above 90% thereafter.2 In order to improve the low 

cooperation rates in the early rounds in the experiment of Huang et al. (2014), we introduce 

the one more stage called the second thought stage in the following manner. Every player 

chooses either C or D in the first stage simultaneously. If all players choose either C or D, 

the game ends. If the number of D players is at least one and at most n-1, then D players 

have the chance to change from D to C sequentially, knowing all the choices made in the 

first stage. The order of the choices of D players is determined exogenously, for example, 

based on the numbering assigned to players. By observing the choices of all D players in 

the second thought stage, C players can change their choices from C to D simultaneously 

except for the case when all D players change their choices in the second thought stage. 

This stage is called the third stage although the second thought stage might have several 

stages. When all D players change their choices, the game ends and the outcome is that all 

players choose C. We call this the simplified approval mechanism with second thoughts 

(SAMST). 

Figure 3 shows an example with n = 2,  = 0.7, and w = 10. Consider subgame a. By 

observing player 1’s choice C, player 2 (who has the chance to change his or her choice) 

must consider player 1’s choice in subgame c. Since 10 > 7, namely C is dominated by D, 

player 1 will choose D in subgame c. By understanding this fact, player 2 in subgame a thus 

chooses C since 14 > 10. Therefore, the outcome in subgame a is (14,14), which differs from 

                                                        
2 Huang et al. (2014) used the ex post cooperation rate. For example, even though a player chose C in 

the first stage, this was not counted in the cooperation rate if that player changed his or her decision 

from C to D in the second stage.  
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the outcome of the SAM. By applying the same argument, we have (14,14) in subgame b. 

That is, the outcomes except for that at (D,D) are (14,14), although (14,14) is achieved at 

(C,C) only in the SAM. 

 

 

 

 

 

 

 

 

 

Figure 3: The SAMST and its reduced normal form game when n = 2. 

 

When the number of players is two, each player chooses C in the second thought 

stage and thus the payoff outcome at (C,D) and (D,C) in the reduced normal form game is 

(2w,2w). Since the payoff outcomes at (C,C) and (D,D) are (2w,2w) and (w,w), 

respectively, and 2w > w, the SPE strategy profiles are (C,C), (C,D) and (D,C). That is, the 

SAMST implements cooperation in SPE if n = 2. 

Consider that players deviate from SPEWDS. In contrast, as Figure 3 shows, three 

paths, namely CC, CDC, and DCC, achieve (14,14) when we use the SAMST. The 

probability of the paths CDC and DCC is (1-q)q(1-q) and q(1-q)(1-q), respectively. Hence, 

CSAMST(2,q) = (1-q)2 + 2q(1-q)2. Since CSAMST(2,0)/q = 0, the success probability of the SAM 

does not decreases as q rises around zero. As Figure 2 shows, CSAMST(2,q) > CSAM(2,q) for all 

(0,1).q  

 

3. The Simplified Approval Mechanism with Second Thoughts for n = 3. 

This section illustrates the three player case that basically contains problems that 

should be handled for the general case. Figure 4 illustrates the SAMST with n = 3,  = 0.7 

(0.4 or 0.5), and w = 10. The bold face numbers show the payoffs with  = 0.7 and the 

numbers in braces show the payoffs with  = 0.4 and the numbers in parentheses in the 

braces show them with  = 0.5. Since the entire tree is relatively large, we only show the 

subgames with CCC, CCD, CDD, and DDD, which are sufficient to understand the entire 

tree. Consider first the case of  = 0.7. Look at subgame a where players 1 and 2 chose C, 

but player 3 chose D. Player 3, who faces the second thought stage, must consider what 

2 
  C D 

 
1 

C 14,14 14,14 

D 14,14 10,10 

 



 

7 
 

1

1

1 1

2

12

2

3

3

D

C

D

D

C

D C

D

C

D

D

C

D

C CD

C C

D

C

D

CD

C

D

C

D

21
21
21

14
14
24

21
21
21

 7
17
17

17
 7
17

10
10
10

14
24
14

14
14
24

 7
17
17

17
 7
17

10
10
10

17
17
 7

21
21
21

3
a b

c d e

3

 
 
 
 
 

12(15)

12(15)

12(15)  
 
 
 
 

8(5)

8(5)

18(15)

 
 
 
 
 

8(5)

18(15)

8(5)

 
 
 
 
 

4(5)

14(15)

14(15)

 
 
 
 
 

14(15)

14(15)

4(5)

 
 
 
 
 

14(15)

4(5)

14(15)

f

10
10
10

D

D
 
 
 
 
 

12(15)

12(15)

12(15)

 
 
 
 
 

12(15)

12(15)

12(15)

 
 
 
 
 

8(5)

8(5)

18(15)

 
 
 
 
 

4(5)

14(15)

14(15)

 
 
 
 
 

14(15)

4(5)

14(15)

would happen in subgame c. Players who chose C in the first stage face a PD game in 

subgame c and hence, both choose D. In this sense, players who chose C in the first stage 

can burden players who chose D in the second thought stage, although this hurts every 

player. By understanding this fact, player 3 compares 21 with C and 10 with D. Since C 

dominates D, player 3 chooses C in subgame a. That is, player 3, who chose C at node a, can 

obtain the bonus from players 1 and 2, who chose C in the first stage. Therefore, the 

outcome of subgame CCD is (21,21,21). 

Consider next subgame b where player 1 chose C but players 2 and 3 chose D. Players 

2 and 3 face the second thought stage sequentially. Pay attention to the last nodes or the 

third stage where player 1 faces the choice between C and D. Although the number of 

players is one, players who arrive at the nodes face PD games and hence, they always 

choose D at each node. 

 

 

 

 

 

 

 

 

 

 

Figure 4.The SAMST when n = 3. 

 

Moreover, consider subgame e where player 2 did not change his or her choice in 

subgame b. Since player 1 chooses D in the following subgames, player 3 chooses D in 

subgame e and the payoff is 10. Consider subgame d. In contrast, player 3, who can take 

advantage of the bonus effect in subgame d, chooses C since player 1 in the following 

subgame will choose D if player 3 chooses D. That is, 21 > 17. Knowing this process, player 

2 chooses C since 21 > 10. Therefore, all payoff outcomes other than (D,D,D) are (21,21,21) 

and hence, the final outcome is (C,C,C) under SPEWDS, as the reduced normal form game 

in Figure 5-(a) shows. In contrast, as Figure 4-(b) shows, (21,21,21) appears only in subgame 

CCC under the SAM. 

The sequentiality of D players is important to implement cooperation.3 If nodes d and 

                                                        
3 We thank Xiaochuan Huang for indicating this fact. 
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e were in the same information set, the payoff of player 3 from choosing C in the 

information set would be (21,7) and the payoff from choosing D would be (17,10); hence, 

both would survive by using the elimination of weakly dominated strategies. 

Let us next look at the case of  = 0.4. Consider node f where player 1 chooses D. 

Then, player 3 at node d chooses D since 14 > 12. Knowing this fact, player 2 chooses D 

since 10 > 4. That is, the payoff in subgame b becomes (10,10,10). From the viewpoint of 

player 3, since  is too small, the player cannot take advantage of the bonus effect at node 

d. 

 

 

 

 

             

 

 

(a)  = 0.7 with the SAMST.                    (b)  = 0.7 with the SAM. 

 

 

 

 

 

 

(c)  = 0.4 with the SAMST.                     (d)  = 0.4 with the SAM. 

 

 

 

 

 

 

(e)  = 0.5 with the SAMST. 

Figure 5.The reduced normal form games of the SAMST and SAM when n = 3. 

 

As the reduced normal form game in Figure 5-(c) shows, the payoff outcome with 

subgames where two players choose C and one player chooses D is (12,12,12) and the 
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payoff outcome with subgames where one player chooses C and two players choose D is 

(10,10,10), but the final outcome is still (C,C,C) under SPEWDS. In contrast, as Figure 5-(d) 

shows, (12,12,12) appears only in subgame CCC under the SAM. 

Consider the case when  = 0.5. The payoff outcomes at paths CDDCDD and CDDCC 

in Figure 3 are (15,5,15) and (15,15,15), respectively. If this were the case, player 3 at node d 

would be indifferent between C and D. That is, both C and D survive by using the 

elimination of weakly dominated strategies at node d. This influences the decision of player 

2 at node b. Figure 6 shows the reduced normal form game at node b excluding player 1. 

 

 

 

 

 

Figure 6. Subgame b and its reduced normal form game at node b. 

 

Note that the payoff at (D,C) in Figure 6 should be (10,10) when player 2 chooses D. 

That is, player 3’s choice does not matter and hence, both C and D survive by using the 

elimination of weakly dominated strategies for player 2. To sum up, the payoff outcome in 

subgame b or CDD is (15,15,15), (15,5,15), or (10,10,10). At (15,5,15), player 1 changes from 

C to D at the third stage knowing that player 3 kept the choice at D. That is, only player 

who chose C is player 2. Similarly, the payoff outcome in subgame DCD or DDC is 

(15,15,15), (5,15,15), or (10,10,10). Since the first D player in the second thought stage at 

DCD and DDC is player 1, the payoff outcome should be (5,15,15) when player 1 changes 

from D to C at the second thought stage and the rest choose D. That is, there are 33=27 

reduced normal form games when  = 0.5. Look at Figure 5-(e). Since there are three 

possible payoff outcomes, for example, at CDD, we write these payoff outcomes under 

CDD. Since one of them should be chosen at a reduced normal form game, we chose 

(10,10,10) in Figure 5-(e). Similarly, three possible payoff outcomes at the left hand side of 

DCD, and at the right hand side of DDC.  

Consider player 1. There is a case where both C and D survive by using the 

elimination of weakly dominated strategies for player 1: (10,10,10) at CDD and (15,15,15) at 

DCD and DDC. Then, both players 2 and 3 choose C and hence, the SPEWDS strategy 

profile of the reduced normal form game is (C,C,C) or (D,C,C). Although player 1 chooses 

D at (D,C,C), the player will change from D to C in the second thought stage; hence, the 

payoff outcome is (15,15,15). The real problem is that player 1 cannot tell which reduced 

normal form game player 1 faces and hence, both C and D survive when player 1 must 
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make a decision in the first stage. 

Note also that the payoff at C and the payoff at D of player 1 are the same for all 

possible choices of players 2 and 3 in Figure 5-(e). In other words, player 1 cannot 

distinguish between C and D. We say that strategies A and B of a player are 

indistinguishable if the payoffs at A and B are the same for all possible choices of the other 

players. 

Consider all possible reduced normal form games at each node. Strategy A weakly 

rules strategy B if A weakly dominates B in some reduced normal form game and strategies 

A and B are indistinguishable in the remainder of the reduced normal form games. Then, 

we can define a refinement of SPEWDS by using the weak rule instead of the weak 

dominance in the definition of SPEWDS, which we denote it backward elimination of 

weakly ruled strategies (SPEWRS). 

Look at (c) in Figure 5 and consider (D,D,D). This is also an SPE strategy profile, and 

hence, the SAMST cannot implement cooperation in SPE if n = 3. If n > 3, it is easy to find 

similar examples by choosing  to satisfy 1/(n-1) > .  

 

4. The Simplified Approval Mechanism with Second Thoughts 

The following proposition shows that the SAMST implements cooperation in 

SPEWDS or SPEWRS. 

 

Proposition 2. (i) If {1/(n-1),1/(n-2),…,1/2}, the SAMST implements cooperation in 

SPEWDS and (ii) the SAMST implements cooperation in SPEWRS. 

 

Proof. (i) Let m and l be the numbers of C and D players in the first stage, respectively. If m 

= n, the outcome is (nw,nw,…,nw). If l = n, the outcome is (w,w,…,w). 

Suppose 1  l < n. Consider the choice of players who chose C in the first stage after 

observing the choices of D players in the second thought stage. Let 0  l’ < l be the number 

of D players who change their choices from D to C in the second thought stage. Since 

(m’+l’+1)w < (m’+l’)w + w for all 1  m’  m-1, where m’ is the number of C players in the 

first stage who remains to choose C in the subgame after the second thought stage, D is 

better than C for any C player in the third stage after observing the choices in the second 

thought stage. That is, all players who chose C in the first stage choose D after the second 

thought stage. 

Consider any strategy path on which at least one D player chose D again in the 

second thought stage. If this were the case, every C player after the second thought stage 

would choose D. Keeping this fact in mind, let us choose the youngest D player (e.g., by 
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names or numbers assigned to players) who chose D in the second thought stage. Then, the 

subgame after the choice of the youngest D player is a sequential social dilemma game and 

hence, every D player after the choice chooses D. 

We now identify the payoff outcome of every subgame constructed by the end nodes 

in the first stage. Choose any subgame except for the cases where all players chose C or all 

players chose D in the first stage. Suppose that every D player except for the last one 

changed his or her choice from D to C in the second thought stage. Consider next the choice 

of the last D player. If the player chooses C, the payoff is nw, whereas if the player 

chooses D, the payoff is (l-1)w + w. Since nw - (l-1)w - w = {n-(l-1)}w - w and n-(l-1) = 

m+1, 

 

if  > 1/(m+1), then the last D player chooses C;  

if  = 1/(m+1), then the last D player is indifferent between C and D; and  

if  < 1/(m+1), then the last D player chooses D.  

 

Suppose  > 1/(m+1). If the penultimate player chooses D, then the payoff is (l-2)w + 

w since the last D player chooses D in the second thought stage and every C player in the 

first stage chooses D in the third stage. If the player chooses C, then it is nw since the last 

player chooses C. Since nw-{(l-2)w + w} = {(n-l+2)-1}w = {(m+2)-1)}w > 0, the player 

chooses C. Since nw-{(l-2)w + w} > 0, nw-{(l-k)w + w} > 0 for all 2  k  l. That is, the k-th 

player to last chooses C and hence, all D players choose C in the second thought stage and 

the payoff outcome is (nw, …,nw). 

Suppose  < 1/(m+1). Then, the last D player chooses D and hence, the payoff of the 

penultimate player is (l-1)w if the player chooses C. If the player chooses D, then the 

payoff is (l-2)w + w. Since (l-2)w + w – (l-1)w = (1-)w > 0, the player chooses D. Since 

(l-k)w + w – (l-k+1)w = (1-)w > 0 for all 2  k  l, the k-th player to last chooses D and 

hence, no D players in the first stage change their decisions in the second thought stage and 

the payoff outcome is (w, …,w). 

Take any  satisfying 1/n <  <1 and {1/(n-1),1/(n-2),…,1/2}. Consider the case of 

 > 1/2. Then,  > 1/2  1/(m+1) for all m  1 and hence, the payoff outcome of every 

subgame other than (D,D,…,D) is (nw, …,nw): without loss of generality, consider player 

1. The payoff in subgame (C,D,D,…,D) is nw and that in subgame (D,D,…,D) is w. Since 

nw > w, C is better than D. Since  > 1/(m+1) for all m  1, the outcome of the two 

subgames (C,∙) and (D,∙) is (C,C,…,C) where “∙” shows that at least one player’s choice is C. 

That is, player 1 is indifferent between the outcomes of subgames (C,∙) and (D,∙). Therefore, 

C weakly dominates D for all players and hence, (C,C,…,C) is the SPEWDS outcome. 
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Consider next the case of 1/2  1/(k+1) >  > 1/(k+2)  1/n. Consider player 1. Let “∙” 

indicate that the number of C is k. Then, the payoff in subgame (C,∙) is nw since  > 

1/{(k+1)+1} and that in subgame (D,∙) is w since 1/(k+1) > . That is, C is better than D. 

Since the outcome of the two subgames (C,∙) and (D,∙) is the same where “∙” indicates that 

the number of C is not k, C weakly dominates D for all players and hence, (C,C,…,C) is the 

SPEWDS outcome. 

Thus, if {1/(n-1),1/(n-2),…,1/2}, the SAMST implements cooperation in SPEWDS. 

(ii) Suppose  = 1/(m+1). Then, the last D player is indifferent between C and D since nw 

= (l -1)w+w. Suppose that the penultimate player chooses C. Then, the payoff of the 

penultimate player is nw if the last D player chooses C and is (l-1)w if the last D player 

chooses D. If the penultimate player chooses D, then the payoff is (l-2)w + w. Since nw – 

{(l-2)w + w} = w > 0, nw > (l-2)w + w > (l-1)w. That is, both C and D survive by using 

the elimination of weakly dominated strategies. Since nw > (l-k-1)w + w > (l-k)w for all 

k=1,..,l-1, both C and D survive by using the elimination of weakly dominated strategies for 

all D players. 

Let ( )m    (1/ ) 1     where a    is the smallest integer not less than a. Since 1/n < 

 < 1, 1 ( ) 2.m n     Suppose that (1/) - 1 is an integer. Then, (1/ ) 1.m    The 

following case shows that there exists a player who is indifferent between C and D when 

the number of C players is m  or 1.m Consider two cases: 

 

Case 1: Suppose that the number of C players is .m  Choose any player who is not a 

member of the C players. If the player chooses C, the payoff outcome is nw. If the player 

chooses D, the maximum possible payoff is that all D players other than the player change 

from D to C and the player is the last D player since all C players change from C to D after 

the second thought stage. Then, the payoff is ( 1)l w w    and hence, nw –

{ ( 1) }l w w   = {n – ( 1)l  -1}w = { ( 1) 1} 0m w    , where l n m   and l  2 since n  

2.m  That is, the payoff of C is the same as the payoff of D for the player. 

 

Case 2: Suppose that the number of C players is 1.m  Choose any player who is not a 

member of the C players. If the player chooses C in the first stage, we show that the payoff 

outcome should be at least w. Since 2,l   there must be at least one D player. If all D 

players change from D to C in the second thought stage, the C player obtains nw. If at 

least one D player chooses D in the second thought stage, the C player obtains at least w by 

changing from C to D after the second thought stage. If the player chooses D, the payoff is 

w. That is, the payoff of C can be the same as the payoff of D for the player. 

Thus, there is a possibility that C and D are indistinguishable for some players. Let 
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player 1 be such a player and suppose that the first m  players choose C. Then, since C and 

D are indistinguishable, 

 

1

the payoff outcome of subgame ( , ,..., ; ,..., )

the payoff outcome of subgame ( , ,..., ; ,..., ).

m l

m l

C C C D D

D C C D D




   

Since the payoff outcome of the latter should be (w,w,..,w), each of the last l  players 

in the former can obtain nw by changing from D to C. That is, C weakly dominates D for 

the last l  players. 

In contrast, compare

1

the payoff outcome of subgame ( , ,..., ; ,..., )

m l

D C C D D



 with

1 1

the payoff outcome of subgame ( , ,..., ; ,..., ).

m l

C C C D D

 

The latter payoff outcome should be 

(nw,…,nw) and hence, the payoff of player 1 should be nw. Since player 1 in the former 

should obtain nw, which is more than w, at least one player changes from D to C in the 

second thought stage, and hence, all C players who change from C to D after the second 

thought stage should obtain strictly more than w. Then, each of the same m  players obtains 

w by changing from C to D. That is, C weakly dominates D for the m  players. Thus, C and 

D are indistinguishable for player 1 and C weakly dominates D for the rest. 

Suppose that C and D are indistinguishable for player 1. Then, there exists another 

reduced normal form game in the first stage where C weakly dominates D for player 1. 

Since C and D are indistinguishable for player 1, the payoff of player 1 in subgame 

(C,C,..,C;D,…,D) is either nw or w. Since the payoff outcome in this subgame can be either 

(nw,…,nw) or (w,…,w), there is another reduced normal form game where C weakly 

dominates D for player 1. 

Since the choice of a player who faces indistinguishability is arbitrary, C weakly rules 

D for all players. That is, the SAMST implements cooperation in SPEWRS. █ 

 

Consider the meaning of inequality  > 1/(m+1), i.e., m > (1/) -1. If  = 0.7, (1/) -1 

= 3/7. That is, the minimum number m  of the C players in the first stage where the 

“bonus” effect is activated is at least one. If  = 0.4, ( )m  = 2, which shows that the 

cooperative outcome in subgame b in Figure 3 cannot be realized since only one C player is 

in the first stage. In contrast, ( ) ( )l n m     is the maximum number of D players in the 

first stage, thus leading to the cooperative outcome. The proof of Proposition 2 shows the 

following corollary. 
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Corollary 1. If there is an indistinguishable player in a reduced normal form game at the beginning 

node, no other players are indistinguishable. 

 

Suppose that (1/) - 1 is an integer. Then, there are 1l   possible payoff outcome 

profiles in a subgame in the second thought stage. The total number of subgames in the 

second thought stage where the number of D players is l  is ,n mC  and hence, the total 

number of all possible reduced normal form games at the beginning node is ( 1) ,n mC
l   

where n kC  is the number of k combinations from n players. Among these subgames, each 

player faces just one reduced form game in which C and D are indifferent. As Figure 5-(e) 

shows, the total number of all possible reduced normal form games at the node is (2+1)3=27 

when n = 3 and 1.m   If n = 5 and 2,m  it is 410. If this were the case,  must be 1/3 and 

the chance of a player being indistinguishable would be 1/410. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Success probability functions when n = 3. 

 

Consider the case of n = 3. Although CSAMST with n = 2 does not depend on ,l CSAMST 

with at least three players depends on ,l  which is determined by . That is, CSAMST is a 

function of n, q, and l  and thus, we write it as ( , , ).SAMSTC n q l  Consider the case of  = 0.4. 

Then, (0.4) 1l  and there are two types of success paths. The first one is the success paths 

up to .l  These are CCC, CCDC, CDCC, and DCCC and their probabilities are (1-q)3,  

(1-q)2q(1-q), (1-q)q(1-q)2, and q(1-q)3, respectively. The second one is the success paths 

beyond .l  Look at node b in Figure 4. Although player 2 should choose D when  = 0.4, the 

player might choose C because of deviation. If player 3 also chooses C after player 2’s 

choice induced by deviation, the path CDDCC is also a success path that has a probability 

of (1-q)q4. Since there are two other paths of this kind, CSAMST(3,q,1) = (1-q)3(1+3q)+3(1-q)q4. 

CSAM(3,q) = (1-q)3 

CSAMST(3,q,2)  

= (1-q)3(1+3q+3q2) 

CSAMST(3,q,1)  

= (1-q)3(1+3q)+3(1-q)q4 

q 

Success Probability 
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In contrast, if  = 0.7, the probability of CDDCC is (1-q)3q2. That is, since (0.7) 2,l 

deviation in the second thought stage must lead players to choose D. Therefore, 

CSAMST(3,q,2) = (1-q)3 (1+3q+3q2). Figure 7 shows this case. In order to avoid the 

indeterminacy case, let us assume {1/(n-1),1/(n-2),…,1/2}. Then, by summarizing the 

above argument, we have CSAM(n,q) = (1-q)n , and CSAMST ( , , )n q l = 
1 2

0 1
(1 ) (1 ) .

l nn k n k k
n k n kk k l

q C q C q q
 

  
     

 

Proposition 3. (i) CSAM(n,0)/q = -n and ( ,0, )/ 0 for all ;SAMSTC n l q l   and (ii) for any 1  

l  n-1, CSAMST(n,q,l) > CSAM(n,q) on (0,1). 

 

Proof. (i) Let
1 2

0 1
( ) (1 ) ,  ( )  and ( ) (1 ) .

l nn k n k k
n k n kk k l

f q q g q C q h q C q q
 

  
       Then,

(0) 1.f   Since 1( ) (1 ) ,nf q n q      (0) .f n    Since {1,..., 1}l n   and

0 1
0 1 2 2

( ) 1 ,
l lk k

n n n k n kk k
g q C q C q C q nq C q

 
        (0) 1g   and (0) .g n   Since 

2( ) ( )h q q r q , where 
1 2( 1)

1
( ) (1 ) ,

n kn k
n kk l

r q C q q
 

 
  (0) 0.h   Since 

( , , ) ( ) ( ) ( ),SAMSTC n q l f q g q h q   

( ,0, )
(0) (0) (0) (0) (0) 0 0SAMSTC n l

f g f g h n n
q


         


. 

(ii) By definition, since ( , , )SAMSTC n q l  has a positive part in addition to CSAM(n,q) on (0,1), 

we have the result. █ 

 

The fact that ( , , )SAMSTC n q l > CSAM(n,q) on in (0,1) shows that the SAMST is always 

better than the SAM with respect to the success probability of cooperation. Since ( )l   is a 

non-decreasing function, roughly speaking, the success probability increases as  rises. 

 

5. Concluding Remarks 

Second thoughts is a powerful tool in implementation theory. They change the 

payoff structure of the game in favor of cooperation. Furthermore, the mechanism 

with second thoughts is robust even when players deviate from EWDS. 

 Our approach is different from the trend in implementation theory where finding 

some conditions on social goals such as social choice correspondences is a major research 

goal. Instead, we fix the social goal as Pareto efficiency in social dilemma, then construct a 

mechanism incorporating social dilemma. That is, introducing second thoughts in 
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mechanisms implementing a social goal in some equilibrium concept is still an open 

question. 

 The validity of second thoughts should be confirmed in experiments. Although it is 

still an early stage, Okano and Saijo (2014) started confirming that second thoughts make 

subjects cooperative in even early rounds in experiments.  
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