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Abstract 

I consider systems with voluntary contribution mechanisms (VCM) in a quasilinear 

environment, showing that they are not asymptotically stable under simultaneous difference 

equations, and are structurally unstable under simultaneous differential equations. However, a 

VCM system is stable in a Cobb–Douglas (CD) environment under simultaneous differential 

equations; it is also stable under simultaneous difference equations given conditions on the 

slope of best response functions and the number of players. Most of the parameters investigated 

in nonlinear experiments on the VCM so far have been on the boundaries between stability and 

instability, and there has been hardly any work on instability. Therefore, research on the private 

provision of public goods faces a new challenge in addition to free riding. 
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1. Introduction 

Numerous papers using human subjects have been devoted to research on the voluntary 

contribution mechanism (VCM) in order to understand the public good provision problem.1 

Researchers chose utility functions at their discretion, without investigating what types of 

utility functions people actually have. Almost all experimental economists chose linear utility 

functions such as ( , )i iu x y x by   where ix  is a private good and y a public good. Under this 

linear environment, they found human behaviors such as altruism, equity, warm-glow, and 

spite. They also found conditions for the efficient provision of public goods—conditions that 

built on these aspects of human nature—in addition to devices including punishment, reward, 

and communication. However, what if utility functions are not linear? 

 A typical public good is a network of roads. This public good is related to commuting 

from one’s home to the office, to shops, to venues for leisure, and so on. For example, work 

performance might be affected by commuting time. Some expansion of the network far away 

from one’s home might not affect one’s daily life. All academic personnel belong to some 

committees that provide public goods such as evaluation systems for faculty members, 

employment of new members, construction of new programs, and so on. All members devote 

some time to these committees, but none devote all of their time to them. That is, private and 

public goods are related to each other, and their relationship in our utility functions is not 

linear. 

 A few experimental economists started investigating the properties of the VCM with 

nonlinear utility functions. Innovators such as Isaac, McCue, and Plott (1985), Isaac and Walker 

(1991), Sefton and Steinberg (1996), Isaac and Walker (1998), and Laury, Walker, and Williams 

(1999) used quasilinear utility functions that are linear with respect to player i’s private good 

consumption ix  and nonlinear with respect to a public good y, that is, ( , ) ( ).i iu x y x t y  2 I call 

these utility functions QL1. The rationality behind this formulation is that the private good is 

money and hence its marginal utility is constant, but the marginal utility of the public good 

decreases so that the ( )t y  part is nonlinear. Andreoni (1993), Chan, Mestelman, Moir, and 

Muller (1996), Cason, Saijo, and Yamato (2002) and Sutter and Weck-Hannemann (2004) started 

using Cobb–Douglas utility functions. I call these utility functions CD. A basic reason for using 

this type of utility function is to avoid the multiplicity of Nash equilibria in the VCM obtained 

with QL1 utility functions. That is, the Nash equilibrium is unique with CD utility functions. 

Another type of utility function, nonlinear with respect to ix  and linear with respect to y, that is, 

                                                  
1 See Ledyard (1995) and Chaudhuri (2011) for surveys on experiments. Bergstrom, Blum, and Varian 
(1986) discuss the basic theoretical properties of the VCM. 
2 Isaac, McCue, and Plott (1985) were the first pioneering experimentalists to use QL1 utility functions in 
VCM experiments; Isaac and Walker (1991) also used QL1. In their choice of parameters, no contribution is 
the dominant strategy.  
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( , ) ( ) ,i iu x y h x y   has been used by Sefton and Steinberg (1996), Keser (1996), Falkinger, Fehr, 

Gächter, and Winter-Ebmer (2000), van Dijk, Sonnemans, and van Winden (2002), Uler (2011), 

Maurice, Rouaix, and Willinger (2013) and Cason and Gangadharan (2014) among others.3 I 

call these utility functions QL2. This utility function makes the peculiar assumption that the 

marginal utility of the private good decreases, while that of the public good is constant. An 

advantage of this utility function is that players’ dominant strategies are similar to their 

dominant strategies in a linear environment.  

 In the VCM, each player has some endowment of a private good and must decide on a 

contribution out of this endowment. The level of the public good is the sum of the 

contributions. If b, termed the marginal per capita return, is less than one in the linear utility 

function, each player chooses zero contribution, regardless of the other players’ contributions. 

That is, no contribution is the rational choice, or the dominant strategy. On the other hand, if 

utility functions are nonlinear, the Nash equilibrium is usually located in the interior of the 

consumption set, and players with QL1 or CD utility functions do not have any dominant 

strategy.  

 If players do not have dominant strategies, but have Nash equilibrium strategies, it 

becomes important to consider the stability of the system, as researchers in other fields such as 

industrial organization do. Since players have dominant strategies in the QL2 environment, I 

focus upon QL1 and CD environments for my stability analysis. 

 First, I consider a system of simultaneous difference equations using best response 

dynamics assuming that every player has the same utility function and identical endowments. 

Surprisingly, any VCM system in the QL1 environment is unstable regardless of the number of 

players. If the environment is CD, the stability condition is ( 1) 1a n   where a is the slope of 

the best response function and n is the number of players. Second, let us consider the system of 

simultaneous differential equations using best response dynamics. Although the VCM system 

with QL1 is stable, it is on the bifurcation point. That is, a slight parameter change alters the 

properties of the Nash equilibrium, and affects stability. In this sense, the system is structurally 

unstable. On the other hand, the system is stable in the CD environment.  

 Since most of the experiments mentioned above were repeated for many periods, the 

“difference” model is more appropriate than the “differential” model. Most experiments, 

excluding QL2 experiments, employed unstable systems in the form of difference equations, but 

the analytical focus was based upon the Nash equilibrium. That is, unstable parts of 

experimental results might have been overlooked. Therefore, research on the private provision 

of public goods faces a new challenge in addition to free riding. 

 The organization of the rest of the paper is as follows. I consider stability properties under 

                                                  
3 There are many other experimental papers in this category and the number has been growing.  
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difference equations in section 2 and under differential equations in section 3. Section 4 

summarizes previous experimental results with nonlinear utility functions. Section 5 suggests 

avenues for further research. 

 

2. Stability properties: difference equations 

 Let x be a private good and y be a public good. The production function of the public 

good is y = f(x) = x. That is, for example, one hour of labor input produces one meter of road. 

Player i has endowment w and must decide to divide w into i’s own consumption of the private 

good ix  and the contribution is  to the public good. That is, 
1

n

jy s where n is the number of 

players and n is at least two. This system is called the voluntary contribution mechanism 

(VCM). I assume that all players have the same endowment and the same utility function

( , )iu x y . Then, player i faces the following problem.  
 

 ( , ) subject to i i i i iMax u x s s w x s    
 

where .i jj i
s s 

  Let ( , ) ( , )i i i i iu w s s s v s s    . A list of contributions 1
ˆ ˆ ˆ( ,..., )ns s s  is a Nash 

equilibrium if for all i ˆ ˆ ˆ( , ) ( , ) for all [0, ].i i i i iv s s v s s s w    Define the best response function as 

 

( )ir s  .  arg max ( , )| [0, ] .
i

i i i
s

v s s s w  4
 

 

 Since v and w are the same for all players, all players have the same best response function.  

 So far, experimental economists have been using three types of nonlinear utility functions 

in public good provision experiments: 
 

(QL1) ( , ) ( )i iu x y x t y  ; 

(CD) 1( , ) ,  (0,1)i iu x y x y   ; and 

(QL2) ( , ) ( ) .i iu x y h x y   
 

Once we consider x as money and assume that the marginal utility of money is constant and 

that the marginal utility of the public good is decreasing, it is quite natural to consider QL1 

utility functions, in the spirit of Isaac, McCue, and Plott (1985), Isaac and Walker (1991), Sefton 

and Steinberg (1996), Isaac and Walker (1998), Laury, Walker, and Williams (1999), and others. 

Andreoni (1993), Chan, Mestelman, Moir, and Muller (1996), Cason, Saijo, and Yamato (2002), 

Sutter and Weck-Hannemann (2004), and others used CD utility functions. Sefton and Steinberg 

(1996), Keser (1996), Falkinger, Fehr, Gächter, and Winter-Ebmer (2000), van Dijk, Sonnemans, 

and van Winden (2002), Uler (2011), Maurice, Rouaix, and Willinger (2013), Cason and 

Gangadharan (2014) and others adopted QL2 utility functions in which the public good is in the 

linear form and the private good is in the nonlinear form. All three types have the common 

                                                  
4 If u is strictly quasi-concave, the maximizer is unique and r is continuous by Berge’s maximum theorem. 
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property that the best response functions are linear. In order to see this property, consider the 

first order condition for the maximization problem, i.e., / / 0.iu x u y     Then, totally 

differentiating both sides of the condition, we have the slope of the best response function:  
 

2 2

2

2 2 2

2 2

.

2

i

i

ii

u u

x yydr

ds u u u

x yx y


 

 

 
  

 
  

 

 

If the utility function is QL1, since 
2 2/ 0iu x    and 

2 / 0,iu x y    / 1.idr ds    In the same 

way as for QL1, we can obtain the slopes of the best response functions for CD and QL2. 

(1-1) 1,
i

dr

ds
   (1-2) ,

i

dr

ds
  and (1-3) 0,

i

dr

ds
  

where (1-1) is for QL1, (1-2) for CD, and (1-3) for QL2. Since all slopes are constant, the best 

response functions are piecewise linear, putting the best response zero on the negative part (j-

2w in Figure 1, where the horizontal axis represents the sum of the other players’ contributions 

and the vertical axis represents the contribution of player i’s response to is ). Then the best 

response functions are  
 

(2-1) 1max{ (1),0},i is s t 
    5 

(2-2) max{ (1 ) ,0},i is s w    6 and  

(2-3) 1max{ (1),0},is w h   7 

 

where (2-1) is for QL1, (2-2) for CD, and (2-3) for QL2 and where 
1t   and 

1h   are the inverse 

functions of t’ = dt/dy and h’ = dh/dy respectively.  

 At time t, let player i’s choice of contribution be t
is . Although there might be many ways to 

associate 
t
is  with previous information such as 

1 1 2 2( , ),( , )t t t t
i i i is s s s   

   and so on, I simply assume 

that player i chooses ( )t
ir s  at time t+1, where t = 1, 2… That is, I assume that every player 

chooses the best response to the sum of strategies chosen by the other players in the 

immediately preceding period. Then the system of simultaneous difference equations 

                                                  
5 Since ( , ) ( ),i i i i iv s s w s t s s     the first order condition is / 1 ( ) 0.i i iv s t s s        That is, 

1(1) .i it s s


    

6 Since 
1( , ) ( ) ( ) ,i i i i iv s s w s s s 

    the first order condition is 
1/ (( )/( ))i i i iv s s s w s 

       

(1 )(( )/( )) 0.i i iw s s s 

      Then ( )/( ) (1 )/ ,i i is s w s     and hence (1 ) .i is s w      

7 Since ( , ) ( ) ( ),i i i i iv s s h w s s s     the first order condition is / ( ) 1 0.i iv s h w s        That is, 
1(1) .ih w s    
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1 ( )t t
i is r s

 (i = 1,2,...,n) is locally stable at the Nash equilibrium ŝ  if the system 
1 ˆ( )t t

i i i is r s s k

 
   

(i = 1,2,...,n) is stable, where ˆ ˆ ˆ( ) .i i i ik s r s s 
   That is, the system is a linear approximation to 

the original system at the Nash equilibrium. Since the best response function is the same for all 

players and is continuous, we have the symmetric Nash equilibrium. Let a be the slope of the 

best response function at the Nash equilibrium. Then, Saijo and Kobayashi (2014) proved the 

following property.8 
 

Property 1. The system 

1 ( )t t
i is r s

 (i = 1, 2,..., n) is locally asymptotically stable if and only if 

( 1) 1.a n  9 
 

Although the system 

1 ˆ( )t t
i i i is r s s k

 
   (i = 1,2,...,n) is the linear approximation of the system 

1 ( )t t
i is r s

 (i = 1,2,...,n) at the Nash equilibrium ŝ , both systems are the same if the best 

response functions are linear. If a utility function is QL1, the system is not stable since a = -1 and 

( 1) ( 1) 1a n n     since 2.n   That is, 
 

Proposition 1. If the utility function is QL1, the system 

1 ( )t t
i is r s

 (i = 1, 2,..., n) is not asymptotically 

stable. 
 

 Notice that since 
1(1)i is s t 

    for all i excluding negative contributions, the set of Nash 

equilibria is 1
1 2{( , ,..., )| (1), 0}n j js s s s t s   where 

1(1)t   is the intercept g in Figure 1. Laury 

and Holt (2008) and Sefton and Steinberg (1996) pointed out that the relatively large standard 

deviation of each player’s contributions might come from multiple Nash equilibria. 

Consider Figure 1, drawn for QL1. All players have the same endowment w and g-j-2w is 

the best response function. Consider the case of two players, that is, the left half of the box, 0-w-

v-w. Then ( 1) 1(2 1) 1.a n    The slope of line 0v is 1; hence, the symmetric Nash 

equilibrium must be at the intersection of lines 0v and ( )ir s , which is e. Suppose, for example, 

that both players choose a. If this is the case, the best response is b. Then, since both choose b, 

the next best response is c, and the next response is b. That is, the system cycles between b and c. 

As an example, let g be 12 and let 
1 1
1 2( , ) ( , ),s s k m 12,  and , 0k m k m    and consider the case 

where each chooses different contribution: let 1 (9,7)s  . Then 
2 (5,3)s  3and (9,7).s   That is, 

the system gets into the cycle between (9, 7) and (5, 3). Since the numbers in (9, 7) and (5, 3) do 

not hit the boundaries 0 and 12, I call the cycle an interior cycle.10 If the sum of contributions is 

12, i.e., 1 (12 , )s k k  and 0 12,k  the system stays at (12-k, k) which is a Nash equilibrium. 

Among the Nash equilibria, (6, 6) is the symmetric Nash equilibrium. 

                                                  
8 I ignore the negative part of the best response functions for mathematical simplicity. 
9 An intuitive interpretation of asymptotical stability of differential equations is given by Hirsch and 
Smale (1974). “An equilibrium x  is stable if all nearby solutions stay nearby. It is asymptotically stable if all 

nearby solutions not only stay nearby, but also tend to x ” (p.180). 
10 “A fixed point is called neutral or indifferent if it is neither attracting nor repelling” (p.331) of Hirsch, 
Smale, and Devaney (2013). In this sense, the system with QL1 is neutrally stable if n = 2. 
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Consider the case of three players, that is, the entire box, 0-2w-z-w. Then ( 1) 2 1.a n  

The slope of line 0z is 1/2 and hence the symmetric Nash equilibrium must be at the 

intersection of lines 0z and ( ),ir s  which is e’. Suppose that every player’s input is the same at 

a/2. If this is the case, the best response is b. Then, the next best response should be c’ and the 

best response to c’ is g. That is, the best response to g is d and thereafter, the system cycles 

between d and g. As an example, let g be 12 and suppose that the sum of contributions is not 12 

and let 1 1 1 1
1 2 3( , , ) (9,7,2).s s s s   Then 2 (3,1,0),s  3 (11,9,8),s  4 (0,0,0),s   and

5 (12,12,12).s   Then the system gets into the cycle between (0, 0, 0) and (12, 12, 12). Since both 

12 and 0 are the boundaries of the best response function, I call this cycle a boundary cycle. If the 

sum of contributions is 12, the system stays at 
1s  which is a Nash equilibrium. Among the Nash 

equilibria, (4, 4, 4) is a symmetric Nash equilibrium. 

 

 

Figure 1. The best response function when the utility function is QL1. 

 

The difference between the two-player and the three-player cases is in the nature of the 

cycles, i.e., either interior or boundary. If every player contributes 
10 12is  and the sum of the 

contributions is not 12, the system gets into the interior cycle immediately when n = 2, but hits 

the boundaries (0, 0, 0) and (12, 12, 12) within a few periods when n = 3. In this sense, the degree 

of instability is relatively more severe for the three-player case.  

Consider the case with CD utility functions. Unlike with QL1 utility functions, the Nash 

equilibrium with CD functions is unique as long as every player has the same utility function 

and the same endowment. Then using Property 1, if n = 2, ( 1) 1n    since 0 <  < 1. 

Although it is trivial, there is a parameter range in which the system is stable. 
 

Proposition 2. Suppose that the utility function is CD.  
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(i) If n = 2, the system 

1 ( )t t
i is r s

 (i = 1, 2,..., n) is asymptotically stable; and 

(ii) If 3n   and 1/( 1),n    the system is asymptotically stable. 
 

As in Chan, Mestelman, Moir, and Muller (1996), let n = 3,  = ½, and w = 20. Then 

( 1) 1n    and max{ (1/2) 10,0}.i is s    The intersection between 

(1/2) 10 and (1/2)i i i is s s s      is (10, 5) and hence (5, 5, 5) is the unique Nash equilibrium. 

As an example, let 
1 (4,4,4).s  Then 

2 3(6,6,6) and (4,4,4).s s   That is, the system gets into 

the interior cycle between (4, 4, 4) and (6, 6, 6).11 When n = 3, interior cycles would never 

happen if the utility function is QL1.  

On the other hand, since the best response for QL2 is the horizontal line and since this is 

the dominant strategy, the system is always stable.  

 

3. Stability properties: differential equations 

I formulated the dynamic model of the VCM using a system of simultaneous difference 

equations in the previous section, and will consider it using a continuous adjustment process in 

this section. Since the best response functions using QL1 and CD are linear excluding the 

negative part, I will consider the system of simultaneous linear differential equations expressed 

by  
 

(3) ( ) ( ) ( )i i i is t a s t k s t    (i = 1, 2,..., n).  
 

Since all players have identical utility functions and endowments, ik k  for all i, where 

1(1)k t   for QL1 and (1 )k w   for CD. Increases or decreases in player i‘s contribution is 

governed by the difference between the best response to the sum of other players’ contributions 

at time t ( ( ) )ia s t k   and player i’s contribution at time t ( ( ))is t . If the difference, i.e., 

{ ( ) } ( ),i ia s t k s t    is positive (negative), player i’s contribution increases (decreases) depending 

upon the magnitude of the difference. Using matrix notation, (3) can be expressed by 
 

( ) ( ) ( ) [ ] ( )t t t t    s As k s A - I s k  

 

where I is the identity matrix,

0 1 1

1 0

1

1 1 0

a

 
 
 
 
 
 

A , 
1( )

( )

( )n

s t

t

s t

 
 


 
  

s  and .

k

k

 
 


 
  

k  

 

Then Saijo and Kobayashi (2014) proved the following property. 
 

Property 2. If a > -1, the system ( ) [ ] ( )t t s A - I s k  is asymptotically stable at the Nash equilibrium. 
 

                                                  
11 This shows that the system is neutrally stable. 
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As a direct corollary, we have the following proposition. 
 

Proposition 3. If the utility function is CD, the system ( ) [ ] ( )t t s A - I s k  is asymptotically stable at 

the Nash equilibrium. 
 

If the utility function is CD, a    and hence the stability condition in Property 2 is 

automatically satisfied since (0,1).  On the other hand, when the utility function is QL1, a = 

-1, and hence we cannot apply Property 2 to the QL1 case. The stability property is governed by 

the eigenvalues of A I and they are
1

(( 1) 1, 1, 1,..., 1)
n

n a a a a


        .12 For example, if a = 

-1 and n = 2, they are -2 and 0. As an example, let k = 25. The following is a solution of the 

system of differential equations.  
 

2 2
1 1

2 2
2 2

( ) (0) 25 /2(1/2)( 1) (1/2)( 1)

( ) (0) 25 /2(1/2)( 1) (1/2)( 1)

t t

t t

s t se e

s t se e

 

 

       
       

       
 

 

where 1 2( (0), (0))s s  is the initial point at time 0. The eigenvalues expressed in the solution are -2 

in 
2te  and 0 in 

0 1.te   For example, if 1 2( (0), (0)) (10,4),s s   then 1 2( ( ), ( ))s s   (31/2, 19/2) 

where the sum of the contributions is 25, and hence (31/2, 19/2) is a Nash equilibrium. Figure 2 

(a) shows this case. Player 1’s best response curve is 2b a s   and 2’s best response curve is 

1.a b s   The intersection of these curves is the line segment a-b that is the set of Nash 

equilibria. As the phase diagram shows, the system is stable. Let 1 2( ( ), ( ))c s t s t  at time t. Since 

2 1( ( ) 25) ( ) 0,s t s t    c must go upward as the arrow shows. Applying the same procedure to 

every possible initial point, I find that the system is stable. That is, 
 

Proposition 4. If the utility function is QL1, the system ( ) [ ] ( )t t s A - I s k  is asymptotically stable at 

Nash equilibria. 

 

Although the system of the VCM with (3) is stable in the sense that any initial point 

approaches some equilibrium point, it is vulnerable to parameter changes. Let us expand the 

class of QL1 utility functions in the following manner: 
 

(QL1’) ( , ) ( ) ( ).i i i i i iv s s w s z s t s s       
 

The QL1’ utility function is linear with respect to private consumption, but it is not linear with 

respect to i’s own contribution (i.e., the warm-glow part, ( ))iz s  and the public good. Let us 

consider a QL1’ example in which both the warm-glow and the public good parts are quadratic.  

2 21
( , ) 2( ) ( )

50
i i i i i i i iv s s w s gs s s s s          

                                                  
12 See Saijo and Kobayashi (2014). 
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where iw s  is the consumption of the private good, 
2
igs  is the warm-glow term, and 

22( ) (1/50)( )i i i is s s s     is the public good term. If g = 0, the function is QL1, and if g > 0, 

there is a warm-glow effect, i.e., more contribution is better for the contributor. Differentiating 

with respect to ,is and then solving the first order condition, we have 
 

25 1
.

1 50 1 50
i is s

g g
 

 
 

 

 

 

      (a) Multiple Nash equilibria                  (b) Unstable Nash equilibrium 

Figure 2. Phase diagrams. 

 
 

 Consider the case where both players whose g value is zero originally change their mind 

and let g = 1/550. Then the slope of the best response function is -1.1(=1/(10/11)). This subtle 

parameter change causes drastic changes in the system. Figure 2(b) shows the change. Point b 

on player 1’s best response curve now jumps to b’, while point a on player 2’s best response 

curve shifts to a’. This change makes the Nash equilibrium unique although the set of Nash 

equilibria in Figure 2 (a) is the line segment a-b. This change gives rise to new areas such as E-a-

a’ and E-b-b’ that are dark areas in the figure. Consider d. Since it is above player 1’s best 

response curve, it should go down, and since it is below player 2’s best response curve, it 

should go up, i.e., go to the right. That is, d will move away from the Nash equilibrium E. In 

fact, E is the saddle point of the phase diagram. That is, both Nash equilibrium and stability 

properties changed due to a small parameter change.  

 If both players change the slopes of their best response functions from -1 to -1.1, the 

eigenvalues of A-I are -2.1 and 0.1. The solution to the system of simultaneous linear differential 

equations is 
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2.1 0.1 2.1 0.1

1 1

2.1 0.1 2.1 0.1
2 2

( ) (0) 275 /21(1/2)( ) (1/2)( )
.

( ) (0) 275 /21(1/2)( ) (1/2)( )

t t t t

t t t t

s t se e e e

s t se e e e

 

 

       
       

       
 

 

Since one of the eigenvalues is greater than 0, the system is not stable. In summary, if the utility 

function is QL1’, the players’ warm-glow utility makes the system unstable.  

 On the other hand, if g = -1/550 < 0, i.e., if the utility function has a cold-glow component, 

the slope of the best response function is -11/12 > -1, and hence the Nash equilibrium is unique 

and the system is stable. 

This example has an important implication for research on VCM using the class of utility 

functions that includes QL1 functions. We say that the system of differential equations is 

structurally stable if the phase diagram is invariant to perturbations of parameters of utility 

functions.13 As the warm-glow example shows, we have the following important proposition. 
 

Proposition 5. If the utility function is QL1’, the system ( ) [ ] ( )t t s A - I s k  is structurally unstable. 
 

That is, the system of simultaneous differential equations in the class of QL1’ functions has a 

bifurcation point when the parameter g is zero. In this sense, the VCM might not be an 

appropriate device for providing public goods since its stability is not guaranteed. Furthermore, 

as Anderson, Goeree, and Holt (1998) pointed out, players make errors in decisions, and hence 

they change the shape of their best response functions.  

 

4. Previous Experimental Results 

Table 1 summarizes some of the previous experimental results obtained with nonlinear 

utility functions. Each paper has its own purposes. These include checking the crowding out 

property, the endowment effect, the punishment effect, the altruism effect, social-tie formation, 

and so on, but I focus upon the very basic part of their experiments, namely average 

contributions. Table 2 summarizes the stability properties of the VCM.  

First, consider the cases when the utility function is QL1. Isaac, McCue, and Plott (1985) 

observed “pulses” of individual contribution patterns with ten subjects of two types, although 

subjects in their model have dominant strategies. Pulsing behavior has been observed in linear 

environments using a different perspective. For example, Isaac, Walker, and Williams (1994) 

reported, "(s)uch 'pulsing' behavior could be interpreted as attempts to influence others' 

allocations through signalling" (p.16). Although it is uncertain whether this behavior might 

aggravate instability in nonlinear environments, surprisingly, no “pulses” were mentioned in 

experiments with QL1 environments. As Sefton and Steinberg (1996) pointed out, contributions 

                                                  
13 According Hirsch and Smale (1974), “when does the phase portrait itself persist under perturbations of 
the vector field? This is the problem of structural stability” (p.304). As for mathematical rigor on structural 
stability, see chapter 1 in Devaney (1989) and chapter 16 in Hirsch and Smale (1974).  



 

12 

 

in the QL1 environment (the top row in Table 1) are more variable than in the QL2 environment 

(the second row from the bottom in Table 1). Laury and Holt (2008) attributed this to the 

multiplicity of Nash equilibria, but not to the instability of the system. The average 

contributions in the experimental results of Sefton and Steinberg (1996), Isaac and Walker 

(1998), and Laury, Walker, and Williams (1999) are far away from the Nash equilibrium 

amounts.  

 

Table 1. Parameters and average contributions in nonlinear experiments 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The pattern of average contribution relative to the amount of endowment in Isaac and 

Walker (1998) is quite interesting. They observed that the sum of contributions is above (below) 

the symmetric Nash equilibrium when the equilibrium amount is low (high) relative to the total 

endowment. If the equilibrium is at the midpoint of the total endowment, the data are also 

around the middle. Anderson, Goeree, and Holt (1998) named this phenomenon the sandwich 

property, since experimental data are sandwiched by Nash equilibria, and provided a 

theoretical interpretation of the property using quantal response equilibrium analysis. Players 

make mistakes around the Nash equilibrium; their errors are normally distributed, but the 

distribution must be truncated since contributions cannot be negative. If the Nash equilibrium 

 Util. 
fun. 

n a ( 1)a n
 

w (Symmetric) 
Nash Eq. 

Average 
Cont. 

Sefton-Steinberg (96)*1 QL1 4 
 

  8 2 4.42 
Isaac-Walker (98) 62 12 27.225 

31 27.4 
50 44.574 

Laury-Walker-
Williams (99) 

5 125s*2 20 
 

62.47 
200s*2 71.28 
125d*3 43.31 
200d*3 44.06 

Andreoni (93) CD 
 

3 -1/2 1 7 3 2.78 
Chan-Mestelman-
Moir-Muller (96) 

1 20,20,20 5,5,5 5.3 
18,18,24 5,5,5 5.1 

Cason-Saijo-Yamato 
(02) 

2 -0.47 0.47 24 8 7.37*3 

Sutter-Weck- 
Hannemann (04) 

3 -1/2 1 7 3 3.18 

Sefton-Steinberg (96)*1 QL2 4 0 
 

 8 2 3.97 
Keser (96) 20 7 10.29 
Maurice-Rouaix-
Willinger (13) 

20 7 8.58-8.9 

Cason-Gangadharan 
(14) 

12 3 5.69 

*1 Involving stranger matching. 
*2 w is at either 125 or 200 and summary information on the payoff structure is provided. 
*3 w is at either 125 or 200 and detailed information on the payoff structure is provided. 
*3 The average of 5 different locations in the USA and Japan and involving stranger matching.   



 

13 

 

 U.f. Difference eq. Differential eq. 

Sefton-Steinberg (96), Isaac-Walker (98),  

Laury-Walker-Williams (99) 

QL1 Unstable; boundary 

cycles; no interior 

cycles 

Stable, but 

structurally 

unstable  

Andreoni (93), Chan-Mestelman-Moir-

Muller (96), Sutter-Weck-Hannemann (04) 

CD Unstable; interior 

cycles 

Stable 

Cason-Saijo-Yamato (02) CD Stable; no cycles Stable 

Sefton-Steinberg (96), Keser (96), 

Falkinger-Fehr-Gachter-Winter-Ebmer 

(00), van Dijk-Sonnemans-van Winden 

(02), Uler (11), Maurice-Rouaix-Willinger 

(13), Cason-Gangadharan (14) 

QL2 Stable; no cycles Stable 

 

is below the midpoint of the endowment, the truncated distribution must have relatively large 

weight on the area where contributions exceed the Nash equilibrium amount. Hence, the 

contribution data must exceed the Nash equilibrium contribution. However, in order for this 

equilibrium analysis to be valid, the system must be stable. 

Although individual data is not provided in Laury, Walker, and Williams (1999), the 

graphs of 90% confidence intervals of contributions show that they are relatively large (Figure 5 

in Laury, Walker, and Williams (1999)). The contributions do not die down towards the ends of 

periods, and one of the frequency graphs for contributions is U-shaped (Figure 6 in Laury, 

Walker, and Williams (1999)), i.e., high and low contributions are more frequent relative to 

intermediate contributions.   

Second, consider the cases when the utility function is CD. Unlike for the QL1 case, the 

Nash equilibrium is unique and ( 1) 1a n   in Andreoni (1993), Chan, Mestelman, Moir, and 

Muller (1996) and Sutter and Weck-Hannemann (2004). That is, it is the boundary of the 

stability condition for the difference equation case, and hence there are many interior cycles 

(please see Table 2). Since ( 1) 0.47 1a n    in Cason, Saijo, and Yamato (2002), the system is 

stable in the difference equation case. As for the differential equation case, all systems are 

always stable. In both cases, the instability of CD is weaker than that of QL1.  

 

Table 2. Stability properties of previous experiments 

 

 

 

 

 

 

 

  

 

 

 

The average contributions in each CD case are close to the Nash equilibrium contribution 

even though the Nash equilibrium is below the midpoint of the endowment. That is, the 

sandwich property is not observed in the CD case.  

Finally, consider the case when the utility function is QL2. The system is stable in both the 

difference and differential cases, but the average contributions are more than what the 
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dominant strategies dictate.14 That is, the contribution pattern in the QL2 case is similar to that 

shown in the linear case in the provision of public goods. As Cason and Gangadharan (2014) 

pointed out, this environment has something that triggers altruism, reciprocity, social-ties, or some 

other factors. 

 

5. Concluding Remarks 

I showed that the VCM system in a QL1 environment is unstable under simultaneous 

difference equations and structurally unstable under simultaneous differential equations. The 

VCM in a CD environment is always stable under simultaneous differential equations, while it 

is also stable under simultaneous difference equations if ( 1) 1.a n    

Although experimental economists have been emphasizing internal validity of the VCM 

system with linear utility functions, they have paid little attention to external validity.15 This 

system is an excellent test bed for understanding many aspects of human nature, but it does not 

provide experimental basis for the provision of public goods if utility functions are not linear. If 

utility functions are QL1, researchers must deal with the instability of the system, and hence the 

VCM might not be an appropriate mechanism for analyzing public good provision. Thus, an 

open research question is to find what types of utility functions people really have, using 

experimental methods including field research. 

Furthermore, a more fundamental question is whether the VCM is the central focus in 

public good provision. In the seventies, when the research on preference revelation on the 

provision of public goods was at its peak, Johansen (1977) criticized this line of research saying 

“there seems to be little empirical evidence which shows the importance of the preference 

revelation issue” (p.147) arguing “a strategy which consists in playing down one’s preferences 

for a public good in order to get a lower share in the costs of providing the good is not likely to 

succeed in an open political decision-making process involving elected representatives” (p.147). 

The same critique might apply to the VCM. Although I do not have any basis for this opinion, 

the instability of the VCM could be one of the reasons why public goods have been provided 

through political decision process in representative democracies. Thus, pursing external validity 

is also an important issue in VCM research. 

There are also many unexplored areas within the realm of internal validity. As Table 1 

shows, average contributions can be more or less than the equilibrium amounts dictated by 

                                                  
14 van Dijk et al. (2002) did not provide the specific data in their paper, but the contributions are about 
30%–270% higher than dominant strategy contributions judging from their figures. Falkinger, Fehr, 
Gachter, and Winter-Ebmer (2000) and Uler (2011) also observed higher contributions than dictated by the 
dominant strategies. The contributions decreased toward the end of the periods just as for the linear utility 
function case. Maurice, Rouaix, and Willinger (2013) found mixed results. One treatment showed over-
contribution and the other did not. 
15 See Guala (2005) for internal and external validity. 
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Nash equilibrium or dominant strategies. Of course, this can be explained by individual player 

characteristics such as altruism, equity, warm-glow, and so on, but the properties of the system 

itself including stability or instability might affect the subjects’ behavior. For example, Saijo 

(2014) explained the sandwich property in Isaac and Walker (1998) using the instability of the 

system (instead of errors). The instability-based explanation is compatible with the data of 

Chan, Mestelman, Moir, and Muller (1996), and others, on CD utility functions. 

Although I employed a simple best response approach, there could be many other ways 

to incorporate dynamics; these include responses to information on strategies used in several 

preceding periods, learning, and so on. Furthermore, characteristics of human nature such as 

altruism, reciprocity, social-tie formation, and social norms, for which evidence has been found 

over the last few decades, might play an important role in alleviating or aggravating instability. 

  From Table 1, we can see that many questions remain to be explored. For example, no 

experiment with ( 1) 1a n   has been done when the number of players is relatively large to 

understand the stability property in a CD environment. That is, as Isaac, McCue, and Plott 

(1985) observed, the number of players could be an important factor influencing VCM stability 

with nonlinear utility functions. Ostrom (2006) summarized experimental results for common-

pool resources, and found “some unexplained pulsing behavior” (p.150) of each appropriator’s 

labor inputs.16 The number of players Ostrom mentioned is 8, while the cases considered in 

Table 1 have between 2 and 5 players. That is, the number of players chosen so far could be 

around the boundary of stability and instability. Results that are valid with small numbers of 

players might not hold with a relatively large number of players. Another possibility is that 

some behavioral factors, possibly some learning processes, might counterbalance instability in 

the VCM with nonlinear utility functions and a small number of players.  

Another important agenda is the location of the Nash equilibrium. The sandwich 

property was not observed in CD environments when the equilibrium contribution amounts 

were below the midpoint of the endowments. However, experiments where the Nash 

equilibrium amount is above the midpoint of the endowment have not been performed, even in 

QL2 environments.  

Some devices such as punishment, reward, and/or communication might affect the 

performance of the VCM with nonlinear utility functions. Cason and Gangadharan (2014) 

reported that peer punishment works reasonably well, though not quite as well as a linear 

utility function. They used a QL2 utility function, which makes the system stable, but the 

effectiveness of devices such as peer punishment has not yet been explored in unstable 

environments, such as QL1 and CD.  

 

                                                  
16 Saijo and Kobayashi (2014) explained pulsing behavior using best response dynamics. 
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